精英家教网 > 高中数学 > 题目详情
3.已知三角形面积为$\frac{1}{4}$,外接圆面积为π,则这个三角形的三边之积为(  )
A.1B.2C.$\frac{1}{2}$D.4

分析 三角形面积为$\frac{1}{4}$,外接圆面积为π,可得$\frac{1}{4}$=$\frac{1}{2}absinC$,πR2=π,解得R,又$sinC=\frac{c}{2R}$,即可解出.

解答 解:∵三角形面积为$\frac{1}{4}$,外接圆面积为π,
∴$\frac{1}{4}$=$\frac{1}{2}absinC$,πR2=π,
解得R=1,$sinC=\frac{c}{2R}$=$\frac{c}{2}$,
∴$\frac{1}{4}$=$\frac{1}{2}ab×\frac{c}{2}$,
解得abc=1.
故选:A.

点评 本题考查了正弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知a∈R,函数f(x)=(-x2+ax)•ex
(1)a=2时,求函数f(x)的单调区间;
(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在复平面内,到复数-$\frac{1}{3}$+3i对应的点F的距离与到直线l:3z+3$\overline{z}$+2=0的距离相等的点的轨迹是(  )
A.抛物线B.双曲线C.椭圆D.直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,在平面多边形ABEDC中,△ABC是正三角形,四边形BCDE是矩形,AB=2,CD=2$\sqrt{3}$,沿BC将△ABC折起,组成四棱锥A′-BCDE,如图2,F、G分别是A′B,A′E的中点.
(1)求证:A′C∥平面BDG;
(2)当三棱锥A′-BCE的体积最大时,求平面BCE与平面CEF的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=f(x)是定义在R上的奇函数,当x>0时,f(x)=$\frac{lnx+k}{e{\;}^{x}}$,曲线y=f(x)在点(1,f(1))的切线与x轴平行,f′(x)是f(x)的导函数.
(Ⅰ)求k的值及当x<0时,函数f(x)的单调区间;
(Ⅱ)设g(x)=(x2+x)•f′(x)对于任意x>0,.证明g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线AB:y=$\frac{1}{2}$x+1相切于点A.
(1)求a,b满足的关系式,并用a,b表示点A的坐标;
(2)设F是椭圆的右焦点,若△AFB是以F为直角顶点的等腰直角三角形,求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.化简以下各式:
①$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}$;
②$\overrightarrow{AB}-\overrightarrow{AC}+\overrightarrow{BD}-\overrightarrow{CD}$;
③$\overrightarrow{FQ}+\overrightarrow{QP}+\overrightarrow{EF}$-$\overrightarrow{EP}$
④$\overrightarrow{OA}-\overrightarrow{OB}+\overrightarrow{AB}$
其结果是为零向量的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设幂函数f(x)的图象经过点(8,4),则函数f(x)的奇偶性为偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设M、N为两个随机事件,如果M、N为互斥事件,那么(  )
A.$\overline M∪\overline N$是必然事件B.M∪N是必然事件
C.$\overline M$与$\overline N$一定为互斥事件D.$\overline M$与$\overline N$一定不为互斥事件

查看答案和解析>>

同步练习册答案