【题目】某车间为了规定工时额定,需要确定加工零件所花费的时间,为此作了
次试验,得到数据如下:
零件数 | 10 | 20 | 30 | 40 | 50 | 60 |
加工时间 | 64 | 70 | 77 | 82 | 90 | 97 |
(1)试对上述变量
与
的关系进行相关性检验,如果
与
具有线性相关关系,求出
对
的回归直线方程;
(2)根据(1)的结论,你认为每小时加工零件的数量额定为多少(四舍五入为整数)比较合理?
附:相关性检验的临界值表
| 小概率 | |
0.05 | 0.01 | |
3 | 0.878 | 0.959 |
4 | 0.811 | 0.917 |
5 | 0.754 | 0.874 |
6 | 0.707 | 0.834 |
![]()
,![]()
参考数据:
;![]()
|
|
|
|
|
17950 | 9100 | 39158 | 1750 | 758 |
科目:高中数学 来源: 题型:
【题目】若S
是公差不为0的等差数列
的前
项和,且
成等比数列。
(1)求等比数列
的公比;
(2)若
,求
的通项公式;
(3)设
,
是数列
的前
项和,求使得
对所有
都成立的最小正整数
。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系
中,动点
与两定点
,
连线的斜率之积为
,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)已知点
,过原点
且斜率为
的直线
与曲线
交于
两点(点
在第一象限),求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体QPABCD为一简单组合体,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.
![]()
(1)求证:平面PAB⊥平面QBC;
(2)求该组合体QPABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】凤鸣山中学的高中女生体重
(单位:kg)与身高
(单位:cm)具有线性相关关系,根据一组样本数据
(
),用最小二乘法近似得到回归直线方程为
,则下列结论中不正确的是( )
A.
与
具有正线性相关关系
B.回归直线过样本的中心点![]()
C.若该中学某高中女生身高增加1cm,则其体重约增加0.85kg
D.若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查,派出10人的调查组,先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分),他们给出甲、乙两个城市分数的茎叶图如图所示:
![]()
(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,并说明理由;
(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率.
(参考数据:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大以来,国家深入推进精准脱贫,加大资金投入,强化社会帮扶,为了更好的服务于人民,派调查组到某农村去考察和指导工作.该地区有100户农民,且都从事水果种植,据了解,平均每户的年收入为2万元.为了调整产业结构,调查组和当地政府决定动员部分农民从事水果加工,据估计,若能动员
户农民从事水果加工,则剩下的继续从事水果种植的农民平均每户的年收入有望提高
,而从事水果加工的农民平均每户收入将为
万元.
(1)若动员
户农民从事水果加工后,要使从事水果种植的农民的总年收入不低于动员前从事水果种植的农民的总年收入,求
的取值范围;
(2)在(1)的条件下,要使这100户农民中从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com