13£®2015-2016ѧÄê¸ß¶þA°à50ÃûѧÉúÔÚÆäÖÐÊýѧ²âÊÔÖУ¨Âú·Ö150·Ö£©£¬³É¼¨¶¼½éÓÚ100·Öµ½150·ÖÖ®¼ä£¬½«²âÊÔ½á¹û°´ÈçÏ·½Ê½·Ö³ÉÎå×飬µÚÒ»×é[100£¬110£©£¬µÚ¶þ×é[110£¬120£©£¬¡­£¬µÚÎå×é[140£¬150£©£¬°´ÉÏÊö·Ö×é·½·¨µÃµ½µÄƵÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£¬
£¨1£©½«ÆµÂÊ·Ö²¼Ö±·½Í¼²¹³äÍêÕû£»
£¨2£©Èô³É¼¨´óÓÚµÈÓÚ110·ÖÇÒСÓÚ130·Ö¹æ¶¨ÎªÁ¼ºÃ£¬Çó¸Ã°àÔÚÕâ´ÎÊýѧ²âÊÔÖгɼ¨ÎªÁ¼ºÃµÄÈËÊý£»
£¨3£©Çë¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼£¬¹À¼ÆÑù±¾Êý¾ÝµÄÖÚÊýºÍÖÐλÊý£¨¾«È·µ½0.1£©£®

·ÖÎö £¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼Çó³öµÚËÄ×éµÄƵÂÊ£¬½«ÆµÂÊ·Ö²¼Ö±·½Í¼²¹³äÍêÕû¼´¿É£»
£¨2£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼£¬Çó³ö³É¼¨ÔÚ[110£¬130£©ÄÚµÄÈËÊý¼´¿É£»
£¨3£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼µÃ³öÖÚÊýÂäÔÚµÚÈý×飬´Ó¶øÇó³öÖÚÊýµÄÖµ£¬
ÔÙ¸ù¾ÝÖÐλÊýÁ½²àƵÂÊÏàµÈÇó³öÖÐλÊý£®

½â´ð ½â£º£¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼µÃ£¬µÚËÄ×éµÄƵÂÊΪ1-£¨0.004+0.018+0.038+0.006£©¡Á10=1-0.66=0.34£»
½«ÆµÂÊ·Ö²¼Ö±·½Í¼²¹³äÍêÕû£¬ÈçÏ£»
£¨2£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼µÃ£¬³É¼¨ÔÚ[110£¬130£©ÄÚµÄÈËÊýΪ£º
50¡Á0.018¡Á10+50¡Á0.038¡Á10=28
ËùÒԸðàÔÚÕâ´ÎÊýѧ²âÊÔÖгɼ¨ÎªÁ¼ºÃµÄÈËÊýΪ28£»
£¨3£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÖªÖÚÊýÂäÔÚµÚÈý×é[120£¬130£©ÄÚ£¬
ËùÒÔÖÚÊýÊÇ$\frac{120+130}{2}$=125£»
ÒòΪÊý¾ÝÂäÔÚµÚÒ»¡¢µÚ¶þ×éµÄƵÂÊΪ10¡Á£¨0.004+0.018£©=0.22£¼0.5£¬
Êý¾ÝÂäÔÚµÚÒ»¡¢µÚ¶þ¡¢µÚÈý×éµÄƵÂÊΪ10¡Á£¨0.004+0.018+0.038£©=0.6£¾0.5£¬
ËùÒÔÖÐλÊýÂäÔÚµÚÈý×éÖУ¬ÉèÖÐλÊýΪx£¬0.22+£¨x-120£©¡Á0.038=0.5£¬
½âµÃx¡Ö127.4£¬
ËùÒÔ£¬¹À¼ÆÑù±¾Êý¾ÝµÄÖÚÊýÊÇ125£¬ÖÐλÊýÊÇ127.4£®

µãÆÀ ±¾Ì⿼²éÁËÆµÂÊ·Ö²¼Ö±·½Í¼µÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÖÚÊýÓëÖÐλÊýµÄ¼ÆËãÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒa£¼b£¼c£¬$\sqrt{3}a=2bsinA$£®
£¨¢ñ£©ÇóBµÄ´óС£»
£¨¢ò£©Èôa=2£¬$b=\sqrt{7}$£¬ÇócµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èç¹ûÁ½ÌõÖ±Ïßl1£ºax+2y+6=0Óël2£ºx+£¨a-1£©y+3=0ƽÐУ¬ÄÇôʵÊýaµÈÓÚ£¨¡¡¡¡£©
A£®-1B£®2C£®2»ò-1D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Éèf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÄÚÓж¨Ò壬Èô$\frac{f£¨x£©}{x}$µ¥µ÷¼õÉÙ£¬Ôò¶Ôa£¾0£¬b£¾0£®ÓУ¨¡¡¡¡£©
A£®f£¨a+b£©£¼f£¨a£©B£®f£¨a+b£©£¼f£¨a£©+f£¨b£©C£®f£¨a+b£©¡Üa+bD£®f£¨a+b£©£¾f£¨a£©+f£¨b£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÎªÁËÁ˽âѧÉúƽ¾ùÿÌìÁ㻨ǮµÄÊýÁ¿£¨Ç®ÊýÈ¡ÕûÊýÔª£©£¬ÒÔ±ãÒýµ¼Ñ§ÉúÊ÷Á¢ÕýÈ·µÄÏû·Ñ¹Û£¬Ä³Ð£´Ó¸ßÒ»Äê¼¶1000ÃûѧÉúÖÐËæ»ú³éÈ¡100Ãû½øÐÐÁ˵÷²é£¬½«ËùµÃÊý¾ÝÕûÀíºó£¬»­³öƵÂÊ·Ö²¼Ö±·½Í¼£¨Èçͼ£©£¬¾Ý´Ë¹À¼Æ¸ßÒ»Ä꼶ÿÌìÁ㻨ǮÔÚ[6£¬14£©ÄÚµÄѧÉúÊýΪ£¨¡¡¡¡£©
A£®780B£®680C£®648D£®460

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÊýÁÐ{an}£¬an=n£¨a-ban£©£¬ÇÒa2=$\frac{6}{5}$£¬a3=$\frac{9}{7}$£®
£¨1£©Çóa1£¬an£»
£¨2£©ÇóÖ¤£ºan£¼an+1
£¨3£©ÇóÖ¤£ºan¡Ê[1£¬$\frac{3}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Éè$\overrightarrow{a}$=£¨-2£¬3£©£¬$\overrightarrow{b}$=£¨-8£¬5£©£¬Ôò5$\overrightarrow{a}$-3$\overrightarrow{b}$=£¨14£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®º¯Êýy=$\frac{x-cosx}{x+sinx}$ÔÚx=2´¦µÄµ¼ÊýÊÇ$\frac{3sin2+1-cos2}{£¨2+sin2£©^{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔÚÊýÁÐ{an}ÖУ¬an+1=an+t£¨n¡ÊN*£©£¬ÆäǰnÏîºÍSn=A•n2+B•n+c£¬ÔòʵÊýcΪ£¨¡¡¡¡£©
A£®-1B£®0C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸