精英家教网 > 高中数学 > 题目详情

【题目】已知长为3的线段的两端点分别在轴和轴上移动,.

1)求点的轨迹的方程.

2)过作互相垂直的两条直线分别与轨迹交于,设中点为中点为,试探究直线是否过定点?若是,求出该定点;若不是,说明理由.

【答案】12)直线过定点

【解析】

1)设,由,然后利用,即可求解.

2)若直线斜率存在且不为0.设直线的方程为,代入椭圆方程,求得的坐标,同理设的方程为,代入椭圆方程,求得的坐标,然后可得直线的直线方程,化简后即可求出过定点.

解:(1)设,由

,整理得点的轨迹的方程为.

2)若直线斜率存在且不为0.设直线的方程为

与椭圆方程联立得

显然,设坐标分别为中点坐标为

.

同理可得,

.

直线的方程为

整理得.

当直线斜率不存在或为0时,直线即为轴,也过点.

综上,直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】国家统计局统计了我国近10年(2009年2018年)的GDP(GDP是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况的重要指标)增速的情况,并绘制了下面的折线统计图.

根据该折线统计图,下面说法错误的是

A. 这10年中有3年的GDP增速在9.00%以上

B. 从2010年开始GDP的增速逐年下滑

C. 这10年GDP仍保持6.5%以上的中高速增长

D. 2013年—2018年GDP的增速相对于2009年—2012年,波动性较小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处的切线方程为,求的值;

2)当时,是否存在整数,使得关于的不等式恒成立?若存在,求出的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①,②,③这三个条件中任选一个,补充在下面问题中.已知:数列的前项和为,且   .求:对大于1的自然数,是否存在大于2的自然数,使得成等比数列.若存在,求的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近些年随着我国国民消费水平的升级,汽车产品已经逐渐进入千家万户,但是我国的城市发展水平并不能与汽车保有量增速形成平衡,城市交通问题越发突出,因此各大城市相继出现了购车限号上牌的政策.某城市采用摇号买车的限号上牌方式,申请人提供申请,经审查合格后,确认申请编码为有效编码,这时候就可以凭借申请编码参加每月一次的摇号.假设该城市有20万人参加摇号,每个月有2万个名额,每个月摇上的人退出摇号,没有摇上的人继续下个月摇号.

1)平均每个人摇上号需要多长时间?

2)如果每个月都有2万人补充进摇号队伍,以每个人进入摇号的月份算第一个月,他摇到号的月份设为随机变量.

①证明:为等比数列;

②假设该项政策连续实施36个月,小王是第一个月就参加摇号的人,记小王参.加摇号的次数为,试求的数学期望(精确到0.01.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:上任意一点到两个焦点的距离和为4,且离心率为

1)求椭圆的方程.

2)过作互相垂直的两条直线分别与椭圆交于,设中点为中点为,试探究直线是否过定点?若是,求出该定点;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时,若函数的图象与的图象有且只有一个交点,则正实数的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某款电视机的寿命,研究人员对该款电视机进行了相应的测试,将得到的数据分组:,并统计如图所示:

并对不同性别的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示:

愿意购买该款电视机

不愿意购买该款电视机

总计

男性

800

1000

女性

600

总计

1200

(1)根据图中的数据,试估计该款电视机的平均寿命;

(2)根据表中数据,能否在犯错误的概率不超过0.001的前提下认为“是否愿意购买该款电视机”与“市民的性别”有关;

(3)以频率估计概率,若在该款电视机的生产线上随机抽取4台,记其中寿命不低于4年的电视机的台数为X,求X的分布列及数学期望.

参考公式及数据:,其中

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C经过定点,其左右集点分别为,过右焦且与坐标轴不垂直的直线l与椭圈交于PQ两点.

1)求椭圆C的方程:

2)若O为坐标原点,在线段上是否存在点,使得以为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案