【题目】已知椭圆
:
上任意一点到两个焦点的距离和为4,且离心率为
.
(1)求椭圆
的方程.
(2)过
作互相垂直的两条直线分别与椭圆
交于
,
和
,
,设
中点为
,
中点为
,试探究直线
是否过定点?若是,求出该定点;若不是,说明理由.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,抛物线
的准线为
,其焦点为F,点B是抛物线C上横坐标为
的一点,若点B到
的距离等于
.
(1)求抛物线C的方程,
(2)设A是抛物线C上异于顶点的一点,直线AO交直线
于点M,抛物线C在点A处的切线m交直线
于点N,求证:以点N为圆心,以
为半径的圆经过
轴上的两个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长为3的线段
的两端点
,
分别在
轴和
轴上移动,
.
(1)求点
的轨迹
的方程.
(2)过
作互相垂直的两条直线分别与轨迹
交于
,
和
,
,设
中点为
,
中点为
,试探究直线
是否过定点?若是,求出该定点;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】华为手机作为华为公司三大核心业务之一,2018年的销售量跃居全球第二名.某机构随机选取了100名华为手机的顾客进行调查,并将这100人的手机价格按照
,
,…,
分成7组,制成如图所示的频率分布直方图.
![]()
(1)若
是
的2倍,求
,
的值;
(2)求这100名顾客手机价格的平均数和中位数(同一组中的数据用该组区间的中间值作代表,精确到个位);
(3)利用分层抽样的方式从手机价格在
和
的顾客中选取6人,并从这6人中随机抽取2人进行回访,求抽取的2人手机价格在不同区间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一、高二年级的全体学生都参加了体质健康测试,测试成绩满分为100分,规定测试成绩在
之间为“体质优秀”,在
之间为“体质良好”,在
之间为“体质合格”,在
之间为“体质不合格”.现从这两个年级中各随机抽取7名学生,测试成绩如下:
![]()
其中m,n是正整数.
(Ⅰ)若该校高一年级有280学生,试估计高一年级“体质优秀”的学生人数;
(Ⅱ)若从高一年级抽取的7名学生中随机抽取2人,记X为抽取的2人中为“体质良好”的学生人数,求X的分布列及数学期望;
(Ⅲ)设两个年级被抽取学生的测试成绩的平均数相等,当高二年级被抽取学生的测试成绩的方差最小时,写出m,n的值.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,直线
,圆
的方程为
,直线
被圆
截得的弦长与椭圆
的短轴长相等,椭圆
的左顶点为
,上顶点为
.
(1)求椭圆
的方程;
(2)已知经过点
且斜率为
直线
与椭圆
有两个不同的交点
和
,请问是否存在常数
,使得向量
与
共线?如果存在,求出
的值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com