精英家教网 > 高中数学 > 题目详情
6.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{5}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{3π}{4}$.

分析 |$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{5}$,则两边平方,运用向量的数量积的定义和向量的平方等于向量的模的平方,即可得到答案.

解答 解:设向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,
∵|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,
∴|$\overrightarrow{a}$+2$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2+4|$\overrightarrow{b}$|2+4|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cosθ=1+4×2+4$\sqrt{2}$cosθ=5,
∴cosθ=-$\frac{\sqrt{2}}{2}$,
∵0≤θ≤π,
∴θ=$\frac{3π}{4}$.
故答案为:$\frac{3π}{4}$.

点评 本题考查平面向量的数量积的定义和性质,考查向量的平方为向量的模的平方,考查基本的运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在△ABC中,cosA=$\frac{3}{5}$,cosB=$\frac{4}{5}$,则sin(A+B)=(  )
A.$\frac{7}{25}$B.$\frac{9}{25}$C.$\frac{16}{25}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a=log23,b=log32,c=log0.52,那么(  )
A.a<b<cB.a<c<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc,
(Ⅰ)求角A的大小;
(Ⅱ)设函数f(x)=sinx+2cos2$\frac{x}{2}$,a=2,f(B)=$\sqrt{2}$+1时,求边长b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某年级有1000名学生,随机编号为0001,0002,…,1000,现用系统抽样方法,从中抽出200人,若0122号被抽到了,则下列编号也被抽到的是(  )
A.0116B.0927C.0834D.0726

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题中,真命题是(  )
A.?x∈R,2x>x2B.?x∈R,ex<0
C.若a>b,c>d,则a-c>b-dD.ac2<bc2是a<b的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1上三个动点P,M,N满足:$\overrightarrow{OP}$=2λ$\overrightarrow{OM}$+3μ$\overrightarrow{ON}$,其中O为原点,直线0M与0N的斜率之积为-$\frac{9}{4}$,试判断是否存在两个定点A,B,使点Q(λ,μ)满足|QA|+|QB|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的两个焦点为F1,F2,点P在双曲线上,且PF1⊥PF2,则双曲线的离心率为$\frac{\sqrt{13}}{2}$,点P到x轴的距离为$\frac{9\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果角β的终边过点P(-5,12),则sinβ+cosβ+tanβ的值为(  )
A.$\frac{47}{13}$B.-$\frac{121}{65}$C.-$\frac{47}{13}$D.$\frac{121}{65}$

查看答案和解析>>

同步练习册答案