精英家教网 > 高中数学 > 题目详情

已知电流I与时间t的关系式为

(1)上图是(ω>0,)在一个周期内的图象,根据图中数据求的解析式;
(2)记的单调递增区间

(1)
(2)

解析试题分析:解:(1)由图可知 A=300。·········2分
设t1=-,t2
则周期T=2(t2-t1)=2()=。∴ ω==150π。  4分
又当t=时,I=0,即sin(150π·)=0,
, ∴
故所求的解析式为。  6分
(2)
,  8分
  10分
  12分
  13分
考点:三角函数的解析式以及性质
点评:主要是考查了三角函数的解析式的求解,以及单调性的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知平面直角坐标系上的三点),为坐标原点,向量与向量共线.
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的定义域及最小正周期;
(2)求的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的最小正周期及最大值;
(Ⅱ)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,<θ<π.
(1)求tanθ;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=sin(ωx+),其中ω>0,||<,若coscos-sinsin =0,且图象的一条对称轴离一个对称中心的最近距离是
(1)求函数f(x)的解析式;
(2)若A,B,C是△ABC的三个内角,且f(A)=-1,求sinB+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点A、B、C的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(,).
(Ⅰ)若||=||,求角α的值;
(Ⅱ)若·,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的最小正周期和单调增区间;
(2)设,若的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量
(I)若
(II)设函数

查看答案和解析>>

同步练习册答案