精英家教网 > 高中数学 > 题目详情
11.已知△ABC的三内角A,B,C所对的边分别是a,b,c,且b=4,c=1,A=2B.则边a的长为2$\sqrt{5}$.

分析 由题意和二倍角公式可得a=8cosB,再由余弦定理可得cosB的方程,解方程代入计算可得a值.

解答 解:∵△ABC中b=4,c=1,A=2B,
∴sinA=sin2B=2sinBcosB,
∴由正弦定理可得a=2bcosB=8cosB,
再由余弦定理可得a2=b2+c2-2bccosA,
∴64cos2B=17-2×4×1×cos2B=17-8(2cos2B-1),
解得cosB=$\frac{\sqrt{5}}{4}$,或cosB=-$\frac{\sqrt{5}}{4}$(舍去)
∴a=8cosB=2$\sqrt{5}$
故答案为:2$\sqrt{5}$.

点评 本题考查正余弦定理解三角形,涉及二倍角公式和方程的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.执行如图所示的程序框图,其运行结果是-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的图象与x轴的交点为(-$\frac{π}{6}$,0),与此交点距离最小的最高点坐标为($\frac{π}{12}$,1).
(Ⅰ)求函数f(x)的解析式,并求出f(x)的对称中心的坐标;
(Ⅱ)若函数f(x)满足方程f(x)=a(-1<a<0),求在[0,2π]内的所有实数根之和;
(Ⅲ)把函数y=f(x)的图象的周期扩大为原来的2倍,然后向右平移$\frac{2π}{3}$个单位,再把纵坐标伸长为原来的2倍,最后向上平移1个单位得到函数g(x)的图象.若对任意的0≤m≤3,方程|g(kx)|=m在区间[0,$\frac{5π}{6}$]上至少有一个解,求正实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设公差为d的等差数列{an}的前n项和为Sn,且a1=6,d∈Z,Sn的最大值为S4
(1)求数列{an}的通项公式;
(2)设bn=$\frac{7}{{S}_{7n+7}}$,求证:b1+b2+b3+…+bn>-$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.由曲线y=$\sqrt{x}$+1和直线x-2y+2=0所围成图形的面积为a,则二项式(x2-$\frac{2}{x}$)3a的展开式中含x-1的项的系数为(  )
A.32B.-32C.48D.-48

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线y=-x+b与曲线y=$\sqrt{4-{x}^{2}}$有且只有两个公共点,则b的取值范围是2≤b<2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在数列{an}中,已知a1=-20,an+1=an+4,则这个数列的前20项的和S20=360.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.圆M的圆心M在y轴的正半轴上,点A(0,-3)在圆M上,点B是圆M上一点,已知圆心M到直线AB的距离为2$\sqrt{3}$,且$\overrightarrow{AM}$•$\overrightarrow{AB}$=8,求圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.f(x)=x3-ax2-4x+1在(-∞,-2]和[2,+∞)上都是单调递增,则a的范围是[-2,2].

查看答案和解析>>

同步练习册答案