精英家教网 > 高中数学 > 题目详情
3.在数列{an}中,已知a1=-20,an+1=an+4,则这个数列的前20项的和S20=360.

分析 由已知得数列{an}是首项a1=-20,公差an+1-an=4的等差数列,由此能求出结果.

解答 解:在数列{an}中,∵a1=-20,an+1=an+4,
∴数列{an}是首项a1=-20,公差an+1-an=4的等差数列,
∴${S}_{20}=20×(-20)+\frac{20×19}{2}×4$=360.
故答案为:360.

点评 本题考查等差数列的前20项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若函数f(x)是奇函数.且在x>0时是增函数,则下列结论中正确的是(  )
A.f(-1)<f(-2)<f(-3)B.f(-3)<f(-2)<f(-1)C.f(-2)<f(-1)<f(-3)D.f(-3)<f(-1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数g(x)=($\frac{1}{2}$)|x-1|,则r=g(2-0.1),s=g(log0.23),t=g(2),则r,s,t的大小关系是(  )
A.t<r<sB.t<s<rC.s<r<tD.s<t<r

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC的三内角A,B,C所对的边分别是a,b,c,且b=4,c=1,A=2B.则边a的长为2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若x是log24和1og28的等差中项,则x=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足nSn+1=(n+1)Sn+n(n+1)(n∈N*),且a1=1.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{n(n+2){a}_{n}+1}{(n+1)(n-1)}$(n≠1),记Tn=b2+b3+…+bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.(1-$\frac{1}{a}$)8的展开式中第7项是(  )
A.$\frac{8}{{a}^{6}}$B.-$\frac{8}{{a}^{6}}$C.$\frac{56}{{a}^{6}}$D.-$\frac{56}{{a}^{6}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,$\sqrt{3}$a=2bsinA.
(1)若c=2,C=45°,求边b的大小;
(2)若b=3,B为钝角,且a-c=$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,AB=3,AC=2,BC=$\sqrt{10}$,则$\overrightarrow{AB}•\overrightarrow{CA}$=-$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案