精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\frac{1}{3}$x3-a2x+$\frac{1}{2}$a(a∈R).
(Ⅰ)当a=1时,函数g(x)=f(x)-b恰有3个零点,求实数b的取值范围;
(Ⅱ)若对任意x∈[0,+∞),有f(x)>0恒成立,求a的取值范围.

分析 (Ⅰ)求得a=1的函数f(x)的导数,求得单调区间和极值,由题意可得,只要b介于极小值和极大值之间;
(Ⅱ)求得f(x)的导数,对a讨论,当a=0时,当a>0时,当a<0时,求得单调区间,即可得到最小值,再由不等式恒成立思想即可得到.

解答 解:(Ⅰ)f'(x)=x2-1=(x+1)(x-1),
令f′(x)=0,x1=-1,x2=1,
当x变化时,f′(x),f(x)的取值情况如下:

x(-∞,-1)-1(-1,1)1(1,+∞)
f′(x)+0-0+
f(x)极大值极小值
$f({-1})=\frac{7}{6}$,$f(1)=-\frac{1}{6}$,
所以,实数b的取值范围是$(-\frac{1}{6},\frac{7}{6})$.
(Ⅱ)f′(x)=(x+a)(x-a),令f′(x)=0,x1=-a,x2=a,
(1)当a=0时,f(x)在[0,+∞)上为增函数,
∴f(x)min=f(0)=0不合题意;                               
(2)当a>0时,f(x)在(0,a)上是减函数,在(a,+∞)上为增函数,
∴f(x)min=f(a)>0,得$0<a<\frac{{\sqrt{3}}}{2}$;                           
(3)当a<0时,f(x)在(0,-a)上是减函数,在(-a,+∞)上为增函数,
∴f(x)min=f(-a)<f(0)<0,不合题意.
综上,$0<a<\frac{{\sqrt{3}}}{2}$.

点评 本题考查导数的运用:求单调区间和极值、最值,同时考查不等式恒成立思想转化为求函数的最值,注意运用分类讨论的思想方法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某工厂年初用49万元购买一台新设备,第一年设备维修及原料消耗的总费用6万元,以后每年都增加2万元,新设备每年可给工厂创造收益25万元.
(1)工厂第几年开始获利?
(2)若干年后,该工厂有两种处理该设备的方案:①年平均收益最大时,以14万元出售该设备;②总收益最大时,以9万元出售该设备.问出售该设备后,哪种方案年平均收益较大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知tanα=$\frac{1}{7}$,tanβ=$\frac{1}{3}$,则tan(α+β)=(  )
A.$\frac{1}{2}$B.$\frac{5}{11}$C.-$\frac{1}{5}$D.-$\frac{2}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,若“否”箭头分别指向①和②,则输出的结果分别是(  )
A.55,53B.51,49C.55,49D.53,51

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令bn=$\frac{4}{{{a_n}^2-1}}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的渐近线方程是y=±$\sqrt{2}$x,则双曲线的离心率等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=2lnx+$\frac{1}{x}$的单调递减区间是(  )
A.(-∞,$\frac{1}{2}$]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2}$,1)D.[1,+∞﹚

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列双曲线中,有一个焦点在抛物线y2=2x准线上的是(  )
A.6y2-12x2=1B.12x2-6y2=1C.2x2-2y2=1D.4x2-4y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数$f(x)=sin(2x+\frac{π}{3})$的图象可由y=cosx的图象先沿x轴向右平移$\frac{π}{6}$个单位,再纵坐标不变,横坐标缩小为原来的$\frac{1}{2}$,变换得到.

查看答案和解析>>

同步练习册答案