精英家教网 > 高中数学 > 题目详情
20.已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令bn=$\frac{4}{{{a_n}^2-1}}$(n∈N*),求数列{bn}的前n项和Tn

分析 (Ⅰ)设等差数列{an}的公差为d,由于a3=7,a5+a7=26,可得$\left\{\begin{array}{l}{a_1}+2d=7\\ 2{a_1}+10d=26\end{array}\right.$,解得a1,d,利用等差数列的通项公式及其前n项和公式即可得出.
(Ⅱ)由(I)可得bn=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,利用“裂项求和”即可得出.

解答 解:(Ⅰ)设等差数列{an}的公差为d,
∵a3=7,a5+a7=26,
∴$\left\{\begin{array}{l}{a_1}+2d=7\\ 2{a_1}+10d=26\end{array}\right.$,解得a1=3,d=2,
∴an=3+2(n-1)=2n+1;
Sn=$3n+\frac{n(n-1)}{2}×2$=n2+2n.  
(Ⅱ)${b_n}=\frac{4}{{{a_n}^2-1}}$=$\frac{4}{{(2n+1{)^2}-1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴Tn=$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}$=$1-\frac{1}{n+1}$=$\frac{n}{n+1}$.

点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=$\frac{1}{2}$|x+a|+b(x∈R)有两个零点分别为x1=0,x2=4,则a+b的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点A(-3,-1)和点B(5,5).
(Ⅰ)求过点A且与直线AB垂直的直线l的一般式方程;
(Ⅱ)求以线段AB为直径的圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆内的黄豆数为225颗,以此实验数据为依据可以估计出椭圆的面积约为(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.算式40-20=4×5中,在横线中填入两个正整数,使它们的乘积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{3}$x3-a2x+$\frac{1}{2}$a(a∈R).
(Ⅰ)当a=1时,函数g(x)=f(x)-b恰有3个零点,求实数b的取值范围;
(Ⅱ)若对任意x∈[0,+∞),有f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1).
(1)求数列{an}的通项公式an
(2)设Tn为数列$\left\{{\frac{a_n}{2^n}}\right\}$的前n项和,求Tn
(3)设bn=$\frac{1}{{{a_{n+1}}{a_n}}}$,证明:b1+b2+b3+…+bn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若半径为r的圆C:x2+y2+Dx+Ey+F=0的圆心C到直线l:Dx+Ey+F=0的距离为d,其中D2+E2=F2,且F>0.
(1)求F的范围;
(2)求证:d2-r2为定值;
(3)是否存在定圆M,使得圆M既与直线l相切又与圆C相离?若存在,请求出定圆M的方程,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin600°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案