分析 函数为分段函数,需进行分类讨论,分段进行处理函数的单调性和值域.
解答 解:由f(x)=$\left\{\begin{array}{l}{2^x}-1,x<1\\ 4(x-1)(x-2),x≥1\end{array}$,进行分类讨论.
①x<1时,f(x)=2x-1,∵此时f(x)单调递增,∴-1<f(x)<f(1)=1,
②x≥1时,f(x)=4(x-1)(x-2),可知f(x)在(1,$\frac{3}{2}$)单调递减,($\frac{3}{2}$,+∞)单调递增,
∴f(x)≥f($\frac{3}{2}$),∴f(x)≥-1,
综上,f(x)≥-1.
∴函数f(x)=$\left\{\begin{array}{l}{2^x}-1,x<1\\ 4(x-1)(x-2),x≥1\end{array}$的值域为[-1,+∞),
故答案为:[-1,+∞).
点评 本题考查分段函数的运用,考查分类讨论的思想,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 甲 | 乙 | 丙 | 丁 | |
| 平均环数$\overline{x}$ | 8.6 | 8.9 | 8.9 | 8.2 |
| 方差s2 | 3.5 | 3.5 | 2.1 | 5.6 |
| A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}π$ | B. | $\frac{2}{3}π$ | C. | $\frac{1}{6}π$ | D. | $\frac{1}{3}π$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com