精英家教网 > 高中数学 > 题目详情
三棱柱 ABC-A1B1C1′中,∠ABC=90°,AA1=AC=BC=2,A1在底面ABC内的射影为AC的中点D.
(1)求证:BA1⊥AC1
(2)求三棱锥 B1-A1DB的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面垂直的性质
专题:空间位置关系与距离
分析:(1)根据直线平面的垂直得出BC⊥AC1,再判断出四边形ACC1A1为菱形,即AC1⊥A1C,运用判断定理可得得证AC1⊥平面A1BC,BA1⊥AC1
(2)转化体积问题)V B1-A1DB=V B-A1B1D=V D-A1BB1=
1
2
V
 C1-A1B1B=
1
2
VB-A1B1C
=
1
6
V ABC-A1B1C1运用体积公式求解即可.
解答: (1)证明:∵A1D⊥平面ABC,A1D?平面ACC1A1
∴平面ACC1A1⊥平面ABC,平面ACC1A1∩平面ABC=AC,
∵BC?平面ABC,BC⊥AC,
∴BC⊥平面ACC1A1
∴BC⊥AC1
∵AA1=CA,
∴四边形ACC1A1为菱形,即AC1⊥A1C,
∵A1C,BC?平面A1BC,A1C∩BC=C,
∴AC1⊥平面A1BC,
∵BA1?平面A1BC,
∴BA1⊥AC1

(2)V B1-A1DB=V B-A1B1D=V D-A1BB1=
1
2
V
 C1-A1B1B=
1
2
VB-A1B1C
=
1
6
V ABC-A1B1C1=
1
6
×2×2×
1
2
×
3
=
3
3
点评:本题考查了空间几何体的性质,运用直线平面的垂直的判断,性质,解决问题,求解体积,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知过点 M(
p
2
,0)的直线 l与抛物线 y2=2px(p>0)交于A,B两点,且 
OA
OB
=-3,其中O为坐标原点.
(1)求p的值;
(2)若圆x2+y2-2x=0与直线l相交于以C,D(A,C两点均在第一象银),且线段AC,CD,DB长构成等差数列,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB,PC的中点
(1)求证:MN∥平面PAD;
(2)若△PAD为正三角形,求异面直线PA与MN所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求二面角B-AC-E的余弦值;
(Ⅲ)求点D到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列定积分:
(1)
3
1
1
x
dx;
(2)
2
0
e
x
2
dx;
(3)
e+1
2
1
x-1
dx;
(4)
π
2
0
cos2x
cosx+sinx
dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个推导过程符合演绎推理三段论形式且推理正确的是(  )
A、大前提:无限不循环小数是无理数;小前提:π丌是无理数;结论:π是无限不循环小数
B、大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数
C、大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数
D、大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数

查看答案和解析>>

科目:高中数学 来源: 题型:

(普通文科做)已知f(x)=
1
3
x3-x2+ax在区间[-2,5]上单调递减,则a的范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax3-3x2+1在区间[
1
2
,2]上存在唯一零点,则实数a取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某几何体的三视图均为腰长为1的等腰直角三角形,则此几何体最长的棱长为
 

查看答案和解析>>

同步练习册答案