精英家教网 > 高中数学 > 题目详情
如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB,PC的中点
(1)求证:MN∥平面PAD;
(2)若△PAD为正三角形,求异面直线PA与MN所成的角的大小.
考点:异面直线及其所成的角,直线与平面平行的判定
专题:空间位置关系与距离,空间角
分析:(1)根据直线和平面平行的判定定理即可得到结论.
(2)根据异面直线所成角的定义即可得到结论.
解答: 解:(1)取PD的中点H,连结AH,
∵N是PC的中点,∴NH∥DC,NH=
1
2
DC

∵M是AB的中点,∴NH∥AM,且NH=AM,
即AMNH为平行四边形,∴MN∥AH,
∵AN?平面PAD,AH?平面PAD,
∴MN∥平面PAD
(2)由(1)知MN∥AH,
则∠PAH就是异面直线PA与MN所成的角,
∵△PAD为正三角形,
∴∠PAH=30°,
即异面直线PA与MN所成的角的大小为30°.
点评:本题主要考查异面直线所成角的求解以及直线和平面平行的判断,要求熟练掌握线面平行的判定定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2014年秋,某校决定派遣语、数、外、物、化、生六科的骨干教师各一人去甲乙两所学校支教,每校至少一人,且物理教师和化学教师必须分在同一所学校.
(Ⅰ)求语文教师和数学教师分在不同学校的概率;
(Ⅱ)用X、Y分别表示这6个人中去甲、乙两校支教的人数,记ξ=|X-Y|,求随机变量ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线两焦点F1,F2,其中F1y=-
1
4
(x+1)2+1
的焦点,两点A (-3,2)B (1,2)都在双曲线上,
(1)求点F1的坐标;
(2)求点F2的轨迹方程;
(3)若直线y=x+t与F2的轨迹方程有且只有一个公共点,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为a的菱形ABCD中,∠ABC=120°,PC⊥平面ABCD,E是PA中点,求E到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱锥P-ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,PC与平面PAD所成角的正弦值为
6
4
,E、F分别是AB、PC的中点,PA⊥平面ABCD.
(1)求证:EF∥平面PAD;
(2)求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(x,y)是椭圆x2+
y2
4
=1上的一个动点,则x2+y2的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱柱 ABC-A1B1C1′中,∠ABC=90°,AA1=AC=BC=2,A1在底面ABC内的射影为AC的中点D.
(1)求证:BA1⊥AC1
(2)求三棱锥 B1-A1DB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
1+cosα
sinα
=2,求cosα-sinα的值.

查看答案和解析>>

同步练习册答案