精英家教网 > 高中数学 > 题目详情
已知在数列{}中,
(1)求证:数列{}是等比数列,并求出数列{}的通项公式;
(2)设数列{}的前竹项和为Sn,求Sn
(1)详见解析;(2)

试题分析:(1)要证明数列是等比数列,只需证明(常数),根据已知条件,将,代入整理,易得常数,首项,所以数列,从而解出的通项公式;
(2), 所以数列{}的前项的和分别是一个等比数列加一个常数列的和,等比数列是首项为2,公比为4的等比数列,常数列的前项的和为,两和相加即为最后结果.
(1),
所以数列是以2为首项,以4为公比的等比数列,         4分
;   所以            6分
(2).   12分项和.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若正项数列满足条件:存在正整数,使得对一切都成立,则称数列级等比数列.
(1)已知数列为2级等比数列,且前四项分别为,求的值;
(2)若为常数),且级等比数列,求所有可能值的集合,并求取最小正值时数列的前项和
(3)证明:为等比数列的充要条件是既为级等比数列,也为级等比数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列的前项和和通项满足
(1)求数列的通项公式;
(2)若数列满足,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{}中, ,,
(1)求证数列{}为等比数列.
(2)判断265是否是数列{}中的项,若是,指出是第几项,并求出该项以前所有项的和(不含265),若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设无穷等比数列{}的公比为q,若,则q=      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等比数列中,,则( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列中,,.
(1)求的值;
(2)求证:是等比数列,并求的通项公式
(3)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两容器中分别盛有两种浓度的某种溶液,从甲容器中取出溶液,将其倒入乙容器中搅匀,再从乙容器中取出溶液,将其倒入甲容器中搅匀,这称为是一次调和,已知第一次调和后,甲、乙两种溶液的浓度分别记为:,第次调和后的甲、乙两种溶液的浓度分别记为:.
(1)请用分别表示
(2)问经过多少次调和后,甲乙两容器中溶液的浓度之差小于.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等比数列{}中,a3=7,前3项之和S3=21, 则公比q的值为(    )
A.-B.1或-C.1或-1D.1

查看答案和解析>>

同步练习册答案