精英家教网 > 高中数学 > 题目详情
11.在△ABC中,$c=\sqrt{3}$,A=75°,B=45°,则△ABC的外接圆面积为(  )
A.$\frac{π}{4}$B.πC.D.

分析 由三角形的知识和正弦定理可得外接圆的半径,可得面积.

解答 解:在△ABC中,$c=\sqrt{3}$,A=75°,B=45°,
∴C=180°-A-B=60°,设△ABC的外接圆半径为R,
则由正弦定理可得2R=$\frac{c}{sinC}$=$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$,解得R=1,
故△ABC的外接圆面积S=πR2=π,
故选:B.

点评 本题考查正弦定理,求出外接圆的半径是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\frac{b}{|x|-a}$(a>0,b>0),因其图象类似于汉字“囧”字,被称为“囧函数”,我们把函数f(x)的图象与y轴的交点关于原点的对称点称为函数f(x)的“囧点”,以函数f(x)的“囧点”为圆心,与函数f(x)的图象有公共点的圆,皆称函数f(x)的“囧圆”,则当a=b=1时,有下列命题:
①对任意x∈(0,+∞),都有f(x)>$\frac{1}{x}$成立;
②存在x0∈($\frac{π}{6}$,$\frac{π}{3}$),使f(x0)<tanx0成立;
③函数f(x)的“囧点”与函数y=lnx图象上的点的最短距离是$\sqrt{2}$;
④函数f(x)的所有“囧圆”中,其周长的最小值为2$\sqrt{3}$π.
其中的正确命题有②③④(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.Sn是等差数列{an}的前n项和,若$\frac{{S}_{n}}{{S}_{2n}}=\frac{n+1}{4n+2}$,则$\frac{{a}_{3}}{{a}_{5}}$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow a$是单位向量,向量$\overrightarrow b=({2,2\sqrt{3}})$,若$\overrightarrow a⊥({2\overrightarrow a+\overrightarrow b})$,则$\overrightarrow a$,$\overrightarrow b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x=$\left\{\begin{array}{l}{f(x+2),x<2}\\{(\frac{1}{3})^{x},x≥2}\end{array}\right.$,f(-1+log35)的值为(  )
A.$\frac{1}{15}$B.$\frac{5}{3}$C.15D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.由不等式$\left\{\begin{array}{l}0≤x≤1\\ 0≤y≤1\end{array}\right.$确定的平面区域记为Ω1,不等式$\left\{\begin{array}{l}{(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{1}{2}\;\;\\ x≥y\\ x+y≥1\\ \;\;\end{array}\right.$确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.α,β是两平面,AB,CD是两条线段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一个条件,就能得出BD⊥EF,现有下列条件:①AC⊥β;②AC与α,β所成的角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的序号是①或③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将函数f(x)=sin(2x+φ)+$\sqrt{3}$cos(2x+φ )(0<φ<π)的图象向左平移$\frac{π}{4}$个单位后,得到函数的图象关于点{$\frac{π}{2}$,0}对称,则φ等于(  )
A.-$\frac{π}{6}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.从集合{0,1,2,3}的所有非空子集中,等可能的取出一个,则取出的非空子集中所有元素之和恰为5的概率为$\frac{2}{15}$.

查看答案和解析>>

同步练习册答案