精英家教网 > 高中数学 > 题目详情
某校1000名学生的某次数学考试成绩X服从正态分布,其密度函数曲线如图,则成绩X位于区间(53,68]的人数大约是
 
考点:正态分布曲线的特点及曲线所表示的意义
专题:综合题,概率与统计
分析:由题图知 X~N(μ,σ2),其中 μ=60,σ=8,P(μ-σ<X≤μ+σ)=P(52<X≤68)=0.682 6,从而得出成绩在(53,68]范围内的学生人数.
解答: 解:由题图知 X~N(μ,σ2),其中 μ=60,σ=8,
∴P(μ-σ<X≤μ+σ)=P(52<X≤68)=0.682 6.
∴人数为 0.682 6×1 000≈682.
故答案为:682.
点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查曲线的变化特点,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

三棱锥S-ABC中,∠SBA=∠SCA=90°,△ABC是斜边AB=a的等腰直角三角形,则以下结论中:
①异面直线SB与AC所成的角为90°.
②直线SB⊥平面ABC;
③平面SBC⊥平面SAC;
④点C到平面SAB的距离是
1
2
a.
其中正确的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

数列-
4
3
9
5
,-
16
7
25
9
,…的一个通项公式是(  )
A、an=(-1)n
n3+n
2n+1
B、an=(-1)n
n(n+1)
2n+1
C、an=(-1)n
(n+1)2
2n-1
D、an=(-1)n
(n+1)2
2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M为等腰△ABC底边BC上的任意一点.求证:|AB|2=|AM|2+|BM|•|MC|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
9
-
y2
16
=1上一点P到双曲线的一个焦点的距离为2,则P到另一个焦点的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α终边上一点A的坐标为(-2,2
3
)
,则sinα=(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

点P是角α的终边上的一点,且P(3,-4),则sinα-cosα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列多项式中能用平方差公式分解因式的是(  )
A、a2+(-b)2
B、5m2-20mn
C、-x2-y2
D、-x2+9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程
x2
2m2-1
+
y2
m
=1
表示椭圆,则m的取值范围是
 

查看答案和解析>>

同步练习册答案