精英家教网 > 高中数学 > 题目详情
己知数列{an}满足a1=1,an+1=
2n+1an
an+2n
 (n∈N*),
(Ⅰ)证明数列{ 
2n
an
 }是等差数列;
(Ⅱ)求数列{an)的通项公式;
(Ⅲ)设bn=n(n+1)an 求数列{bn}的前n项和Sn
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(Ⅰ)由an+1=
2n+1an
an+2n
(n∈N*)变形两边取倒数即可得出;
(Ⅱ)由(I)利用等差数列的通项公式即可得出;
(Ⅲ)由(Ⅱ)知,bn=n(n+1)an=n•2n,利用“错位相减法”和等比数列的前n项和公式即可得出.
解答: 解:(Ⅰ)∵数列{an}满足a1=1,an+1=
2n+1an
an+2n
(n∈N*),
2n+1
an+1
=
2n
an
+1
,即
2n+1
an+1
-
2n
an
=1

∴数列{
2n
an
}
是公差为1的等差数列.

(Ⅱ)由(Ⅰ)可得
2n
an
=
2
a1
+n-1
=n+1,
an=
2n
n+1


(Ⅲ)由(Ⅱ)知,bn=n(n+1)an=n•2n
∴Sn=1×2+2×22+3×23+…+n•2n
2Sn=22+2×23+…+(n-1)•2n+n•2n+1
两式相减得:-Sn=2+22+…+2n-n•2n+1=
2(2n-1)
2-1
-n•2n+1=(1-n)•2n+1-2,
∴Sn=(n-1)•2n+1+2.
点评:本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了变形的能力,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an}满足log3an+1=log3an+1(n∈N*),且a1=1,则数列{log3an}的前n项和是(  )
A、
n(n-1)
2
B、n-1
C、
n(n+1)
2
D、n

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1中,AB=AC,D为BC的中点.
(1)若AA1⊥AD,求证:AD⊥DC1
(2)求证:A1B∥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,过右焦点F且斜率为k(k>0)的直线与C相交与A,B两点,若
AF
=2
FB
,则k=(  )
A、2
B、
23
2
C、
41
2
D、
43

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(sinx)=cos3x,则f(cos10°)的值为(  )
A、-
1
2
B、
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
x-y+5≥0
x+y+k≥0
x≤3          
,若函数z=2x+4y的最小值为-6,则常数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额,此项税款按下表分段累计计算:
全月应纳税所得额税率(%)
不超过1500元的部分3
过1500元至4500元的部分10
超过4500元至9000元的部分20
(1)某人一月份的工资、薪金所得是4500元,那么他应缴纳税款是多少?
(2)某人当月份的工资、薪金所得是x元(3000元≤x≤8000元),应交税款为y元,写出y关于x的函数解析式;
(3)已知某人一月份应交税款303元,那么他这个的工资、薪金所得是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2-2x+a(a≠0)
(1)当a=-1时,求不等式f(x)<0的解集;
(2)若不等式f(x)≥0对x∈(0,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程
x2
2
+
y2
m
=1表示焦点在y轴上的椭圆,命题q:关于x的方程x2+2mx+2m+3=0无实根,若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案