精英家教网 > 高中数学 > 题目详情
11.已知等比数列{an}的前n项和Sn=A•2n-B,且A+B=2.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{lo{g}_{2}{a}_{n}+1}{{a}_{n}}$,求数列{bn}的前n项和Tn

分析 (1)利用递推关系与等比数列的通项公式即可得出;
(2)利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(1)设等比数列{an}的公比为q,∵前n项和Sn=A•2n-B,
∴a1=2A-B,a1+a2=4A-B,a1+a2+a3=8A-B,
解得a1=2A-B,a2=2A,a3=4A,
由${a}_{2}^{2}$=a1a3可得:4A2=(2A-B)×4A,又A+B=2.
联立解得A=B=1,
∴a1=1,a2=2,∴q=2.
∴an=2n-1
(2)bn=$\frac{lo{g}_{2}{a}_{n}+1}{{a}_{n}}$=$\frac{n}{{2}^{n-1}}$,
∴数列{bn}的前n项和Tn=1+$\frac{2}{2}$+$\frac{3}{{2}^{2}}$+…+$\frac{n}{{2}^{n-1}}$,
$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{2}{{2}^{2}}$+…+$\frac{n-1}{{2}^{n-1}}$+$\frac{n}{{2}^{n}}$,
∴$\frac{1}{2}{T}_{n}$=$1+\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-$\frac{n}{{2}^{n}}$=$\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n}}$=2-$\frac{2+n}{{2}^{n}}$,
∴Tn=4-$\frac{2+n}{{2}^{n-1}}$.

点评 本题考查了递推关系、等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数y=sin2x+2sinxcosx-3cos2x,x∈R.
(1)求函数的最小正周期;
(2)求函数的值域;
(3)求函数的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列语句是命题的是(  )
A.这房子大吗?B.这是一棵大树呀!
C.我们班的男生不帅吗?D.3.14是无理数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设α为锐角,且lg(1-cosα)=m,lg(1+cosα)=n,则lgsinα=(  )
A.m-nB.m+nC.$\frac{1}{2}$(m-n)D.$\frac{1}{2}$(m+n)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.点D是△ABC中AB边的中点,CA=CB,E是CD的中点,AE的延长线交BC于F,记$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{DC}$=$\overrightarrow{b}$,则$\overrightarrow{AF}$=(  )
A.$\frac{1}{4}$$\overrightarrow{a}$+$\overrightarrow{b}$B.$\frac{1}{2}\overrightarrow{a}$+$\frac{1}{2}\overrightarrow{b}$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.从[-2,2]中随机地取两个数,求下列情况下的概率:
(1)两数之和大于2;
(2)两数之差不超过1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=f(x)是定义在R上的偶函数,且f(x+2)=$\frac{1}{f(x)}$,若x∈[2,3]时,f(x)=x.
(1)求证:f(x)为周期函数;
(2)求f(5.5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知点P(cosα,sinα),Q($\frac{3}{2}$,0),其中0<α<$\frac{π}{2}$.
(1)若$\overrightarrow{PQ}$$⊥\overrightarrow{PO}$,求cosα的值;
(2)若|$\overrightarrow{PQ}$|=|$\overrightarrow{PO}$|,求sin(2α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设点P、Q分别在直线3x-y+5=0和3x-y-13=0上运动,线段PQ中点为M(x0,y0),且x0+y0>4,则$\frac{y_0}{x_0}$的取值范围为[1,3).

查看答案和解析>>

同步练习册答案