分析 先根据双曲线的标准方程求得渐近线方程,根据其中一条的方程求得a和b的关系,进而求得a和c的关系,则离心率可得.
解答 解:根据题意,由双曲线的方程$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,则其渐近线方程为y=±$\frac{b}{a}$x,
又由其一条渐近线方程为2x+y=0,则有$\frac{b}{a}$=2,即b=2a,
则c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,
则其离心率e=$\frac{c}{a}$=$\sqrt{5}$;
故答案为:$\sqrt{5}$.
点评 本题考查双曲线的几何性质,解题的关键是熟练掌握双曲线方程中的a,b和c基本关系.
科目:高中数学 来源: 题型:解答题
| x | $\frac{π}{12}$ | $\frac{7π}{12}$ | ① | ||
| ωx+ϕ | 0 | $\frac{π}{2}$ | $\frac{3π}{2}$ | 2π | |
| f(x) | 0 | 1 | 0 | -1 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 110 | B. | 116 | C. | 118 | D. | 120 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin(2x-$\frac{π}{3}$) | B. | y=sin(2x+$\frac{π}{3}$) | C. | y=sin($\frac{1}{2}$x+$\frac{π}{6}$) | D. | y=sin($\frac{1}{2}$x+$\frac{π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com