精英家教网 > 高中数学 > 题目详情
17.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线方程为2x+y=0,则C的离心率为$\sqrt{5}$.

分析 先根据双曲线的标准方程求得渐近线方程,根据其中一条的方程求得a和b的关系,进而求得a和c的关系,则离心率可得.

解答 解:根据题意,由双曲线的方程$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,则其渐近线方程为y=±$\frac{b}{a}$x,
又由其一条渐近线方程为2x+y=0,则有$\frac{b}{a}$=2,即b=2a,
则c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,
则其离心率e=$\frac{c}{a}$=$\sqrt{5}$;
故答案为:$\sqrt{5}$.

点评 本题考查双曲线的几何性质,解题的关键是熟练掌握双曲线方程中的a,b和c基本关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow m=(\sqrt{3}sintx,-{cos^2}tx),\overrightarrow n=(costx,1)(t>0)$,把函数f(x)=$\overrightarrow m•\overrightarrow n+\frac{1}{2}$化简为f(x)=Asin(ωx+ϕ)+B的形式后,利用“五点法”画y=f(x)在某一个周期内的图象时,列表并填入的部分数据如下表所示:
(1)请直接写出①处应填的值,并求t的值及函数y=f(x)在区间$[-\frac{π}{2},\frac{π}{6}]$上的单增区间、单减区间;
(2)设△ABC的内角A,B,C所对的边分别为a,b,c,已知$f(\frac{A}{2}+\frac{π}{6})=1,c=2,a=\sqrt{7}$,求$\overrightarrow{BA}•\overrightarrow{BC}$
x$\frac{π}{12}$$\frac{7π}{12}$
ωx+ϕ0$\frac{π}{2}$$\frac{3π}{2}$
f(x)010-10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义在R上的奇函数y=f(x)满足f(4)=0,且当x>0时,不等式f(x)<xf′(x)恒成立,则函数g(x)=$\frac{f(x)}{x}$+e|x|-1的零点的个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.中国古代数学名著《九章算术》中记载:“今有羡除”.刘徽注:“羡除,隧道也.其所穿地,上平下邪.”现有一个羡除如图所示,四边形ABCD、ABFE、CDEF均为等腰梯形,AB∥CD∥EF,AB=6,CD=8,EF=10,EF到平面ABCD的距离为3,CD与AB间的距离为10,则这个羡除的体积是(  )
A.110B.116C.118D.120

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间[45,75)内的产品件数为X,则X数学期望为1.8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若sin($\frac{π}{3}$-α)=$\frac{4}{5}$,则sin(2α-$\frac{π}{6}$)的值为$-\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把函数y=sin x(x∈R)的图象上所有点的横坐标变为原来的2倍(纵坐标不变),再把所得图象上所有点向左平移$\frac{π}{3}$个单位长度,得到图象的函数解析式为(  )
A.y=sin(2x-$\frac{π}{3}$)B.y=sin(2x+$\frac{π}{3}$)C.y=sin($\frac{1}{2}$x+$\frac{π}{6}$)D.y=sin($\frac{1}{2}$x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x,y满足$\left\{\begin{array}{l}x≤2\\ y≤2\\ x+y-2≥0\end{array}\right.$,则z=x+2y的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.2017年天猫五一活动结束后,某地区研究人员为了研究该地区在五一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得概率分布直方图如图所示:记年龄在[55,65),[65,75),[75,85]对应的小矩形的面积分别是S1,S2,S3,且S1=2S2=4S3
(1)以频率作为概率,若该地区五一消费超过3000元的有30000人,试估计该地区在五一活动中消费超过3000元且年龄在[45,65)的人数;
(2)若按照分层抽样,从年龄在[65,75),[75,85)的人群中共抽取6人,再从这6人中随机抽取2人作深入调查,求至少有1人的年龄在[75,85)内的概率.

查看答案和解析>>

同步练习册答案