精英家教网 > 高中数学 > 题目详情
5.中国古代数学名著《九章算术》中记载:“今有羡除”.刘徽注:“羡除,隧道也.其所穿地,上平下邪.”现有一个羡除如图所示,四边形ABCD、ABFE、CDEF均为等腰梯形,AB∥CD∥EF,AB=6,CD=8,EF=10,EF到平面ABCD的距离为3,CD与AB间的距离为10,则这个羡除的体积是(  )
A.110B.116C.118D.120

分析 连接CE,BE,DB,由已知利用多面体体积V=VE-ABCD+VC-BEF求解.

解答 解:连接CE,BE,DB,
则VE-ABCD=$\frac{1}{3}$×$\frac{1}{2}$×(6+8)×10×3=70,
${V}_{D-ABE}={V}_{E-ABD}=\frac{3}{7}{V}_{E-ABCD}$=30,
${V}_{C-BEF}=\frac{5}{3}{V}_{D-ABE}$=50.
∴这个羡除的体积V=VE-ABCD+VC-BEF=70+50=120.
故选:D.

点评 本题考查多面体体积的求法,训练了利用分割补形法及等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.汽车从甲地匀速行驶到乙地运输,汽车速度不得超过80km/h,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分组成:可变部分与速度v(单位:km/h)的平方成正比,比例系数为0.1;固定部分为160元,为了使全程运输成本最小,汽车的速度为40km/h.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为$\frac{2π}{3}$,则$\overrightarrow{{e}_{1}}$在$\overrightarrow{{e}_{2}}$上的投影是-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知,在直角梯形ABCD中,BC∥AD,BC⊥CD,∠BAD=$\frac{π}{3}$,AB=2BC=2,动点P在以C为圆心且与直线BD相切的圆上运动,若$\overrightarrow{AP}$=α$\overrightarrow{AB}$+β$\overrightarrow{AD}$,则α+β的取值范围是(  )
A.[0,1]B.[0,2]C.[1,2]D.(-∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在正方体ABCD-A1B1C1D1中,M、N、P分别是AD1、BD和B1C的中点.
(1)求证:平面MNP∥平面CC1D1D.
(2)求二面角N-B1C-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列命题中,正确的命题是(3).
(1)直线的倾斜角为α,则此直线的斜率为tanα
(2)直线的斜率为tanα,则此直线的倾斜角为α
(3)任何一条直线都有倾斜角,但不是每一条直线都存在斜率
(4)直线的斜率为0,则此直线的倾斜角为0或π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线方程为2x+y=0,则C的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.log2(47×25)-lg$\root{4}{100}$+log23•log34=$\frac{41}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若c(acosB-$\frac{1}{2}$b)=a2-b2
(1)求角A;
(2)若a=$\sqrt{3}$,求c-b的取值范围.

查看答案和解析>>

同步练习册答案