精英家教网 > 高中数学 > 题目详情
14.log2(47×25)-lg$\root{4}{100}$+log23•log34=$\frac{41}{2}$.

分析 根据对数的运算性质计算即可.

解答 解:log2(47×25)-lg$\root{4}{100}$+log23•log34=log2219-$\frac{1}{2}$lg10+log24=19-$\frac{1}{2}$+2=$\frac{41}{2}$,
故答案为:$\frac{41}{2}$

点评 本题考查了对数的运算性质,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xlnx,g(x)=-x2+ax-2
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)设函数F(x)=f(x)-g(x),若函数F(x)的零点有且只有一个,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.中国古代数学名著《九章算术》中记载:“今有羡除”.刘徽注:“羡除,隧道也.其所穿地,上平下邪.”现有一个羡除如图所示,四边形ABCD、ABFE、CDEF均为等腰梯形,AB∥CD∥EF,AB=6,CD=8,EF=10,EF到平面ABCD的距离为3,CD与AB间的距离为10,则这个羡除的体积是(  )
A.110B.116C.118D.120

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若sin($\frac{π}{3}$-α)=$\frac{4}{5}$,则sin(2α-$\frac{π}{6}$)的值为$-\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把函数y=sin x(x∈R)的图象上所有点的横坐标变为原来的2倍(纵坐标不变),再把所得图象上所有点向左平移$\frac{π}{3}$个单位长度,得到图象的函数解析式为(  )
A.y=sin(2x-$\frac{π}{3}$)B.y=sin(2x+$\frac{π}{3}$)C.y=sin($\frac{1}{2}$x+$\frac{π}{6}$)D.y=sin($\frac{1}{2}$x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数$z=\frac{a-i}{1+i}$为纯虚数,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x,y满足$\left\{\begin{array}{l}x≤2\\ y≤2\\ x+y-2≥0\end{array}\right.$,则z=x+2y的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线y2=2px(p>0)上任意一点到直线y=x+2的距离的最小值为$\frac{\sqrt{2}}{2}$.
(1)求抛物线的方程;
(2)若过(3,0)且斜率为l的直线交抛物线于D,H两点,将线段DH向左平移3个单位长度至D1H1,则在抛物线上是否存在点E,使得S△EDH-S${\;}_{△E{D}_{1}{H}_{1}}$最大?若存在,求出最大值及点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sinxcosx+sin2x.
(1)求函数f(x)的递增区间;
(2)若a为锐角,且f($\frac{α}{2}$)=$\frac{3\sqrt{2}+5}{10}$,求cosα.

查看答案和解析>>

同步练习册答案