精英家教网 > 高中数学 > 题目详情
12.从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间[45,75)内的产品件数为X,则X数学期望为1.8.

分析 求出产品指标落在各区间的产品个数,得出一件产品的质量指标落在区间[45,75)内的概率,利用二项分布的数学期望公式计算.

解答 解:质量指标落在[55,85]的产品件数为100×[1-(0.004+0.012+0.019+0.030)×10]=35,
∴质量指标落在[55,65),[65,75),[75,85]内的产品件数分别为20,10,5,
又质量指标落在[45,55]的产品件数为100×0.030×10=30,
∴质量指标值位于区间[45,75)内的产品件数为30+20+10=60,
∴从该企业生产的这种产品中随机抽取1件,这件产品质量指标值位于区间[45,75)内的概率为$\frac{60}{100}$=0.6.
∴X~B(3,0.6),
∴X的数学期望为3×0.6=1.8.
故答案为:1.8.

点评 本题考查了频率分布直方图,二项分布,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)的展开式中,含x7的项的系数是-36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校一个校园景观的主题为“托起明天的太阳”,其主体是一个半径为5米的球体,需设计一个透明的支撑物将其托起,该支撑物为等边圆柱形的侧面,厚度忽略不计.轴截面如图所示,设∠OAB=α.(注:底面直径和高相等的圆柱叫做等边圆柱.)
(1)用α表示圆柱的高;
(2)实践表明,当球心O和圆柱底面圆周上的点D的距离达到最大时,景观的观赏效果最佳,试求出OD最大值,并求出此时α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在正方体ABCD-A1B1C1D1中,M、N、P分别是AD1、BD和B1C的中点.
(1)求证:平面MNP∥平面CC1D1D.
(2)求二面角N-B1C-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.y=$\sqrt{lo{g}_{\frac{1}{2}}(3x-2)}$的定义域是($\frac{2}{3},1$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线方程为2x+y=0,则C的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.底面为正三角形的直三棱柱ABC-A1B1C1的各棱长都为1,M,N分别为CC1,BB1的中点,则点N到面A1BM的距离为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知△ABC中,b=2,B=45°,C=105°,则a=(  )
A.$\sqrt{2}$B.$\sqrt{3}$+1C.$\sqrt{3}$-1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品获奖情况预测如下:
甲说:“C或D 作品获得一等奖”
乙说:“A 作品获得一等奖”
丙说:“B,D 两项作品未获得一等奖”
丁说:“C 作品获得一等奖”
若这四位同学中有且仅有两位说的话是对的,则获得一等奖的作品是A.

查看答案和解析>>

同步练习册答案