精英家教网 > 高中数学 > 题目详情

【题目】如图1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F分别为AC,BC的中点,沿EF将△CEF折起,得到如图2所示的四棱锥C′﹣ABFE
(1)求证:AB⊥平面AEC′;
(2)当四棱锥C′﹣ABFE体积取最大值时,
①若G为BC′中点,求异面直线GF与AC′所成角;
②在C′﹣ABFE中AE交BF于C,求二面角A﹣CC′﹣B的余弦值.

【答案】
(1)解:证明:因为△ABC 是等腰直角三角形,∠CAB=90°,E,F 分别为AC,BC 的中点,

所以EF⊥AE,EF⊥C'E.

又因为AE∩C'E=E,所以EF⊥平面AEC'.

由于EF∥AB,所以有AB⊥平面AEC'.


(2)解:①取AC'中点D,连接DE,EF,FG,GD,

由于GD 为△ABC'中位线,以及EF 为△ABC 中位线,

所以四边形DEFG 为平行四边形.

直线GF 与AC'所成角就是DE 与AC'所成角.

所以四棱锥C'﹣ABFE 体积取最大值时,C'E 垂直于底面ABFE.

此时△AEC'为等腰直角三角形,

ED 为中线,所以直线ED⊥AC'.

又因为ED∥GF,所以直线GF 与AC'所成角为

② 因为四棱锥C'﹣ABFE 体积取最大值,

分别以EA、EF、EC'所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系如图,

则C'(0,0,a),B(a,2a,0),F(0,a,0),C'B(a,2a,﹣a),C'F(0,a,﹣a).

设平面C'BF 的一个法向量为 =(x,y,z),

得,取y=1,得 =(﹣1,1,1).

平面C'AE 的一个法向量 =(0,1,0).

所以cos< >= =

故平面C'AE与平面C'BF的平面角的夹角的余弦值为


【解析】(1)推导出EF⊥AE,EF⊥C'E,从而EF⊥平面AEC',由此能证明AB⊥平面AEC'.(2)①取AC'中点D,连接DE,EF,FG,GD,推导出四边形DEFG 为平行四边形,直线GF 与AC'所成角就是DE 与AC'所成角,由此能求出直线GF 与AC'所成角.②分别以EA、EF、EC'所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,利用向量法能求出平面C'AE与平面C'BF的平面角的夹角的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高一(1)班全体男生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图所示,据此解答如下问题:

(1)求该班全体男生的人数;

(2)求分数在之间的男生人数,并计算频率公布直方图中之间的矩形的高;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同选法?(用数字作答)
(1)男、女同学各2名;
(2)男、女同学分别至少有1名;
(3)在(2)的前提下,男同学甲与女同学乙不能同时选出。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知A(5,-2),B(7,3),且AC边的中点My轴上,BC的中点Nx轴上.

(1)求点C的坐标

(2)边上的中线所在直线方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点O和点F2(﹣ ,0)分别为双曲线 =1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=xlnx-a(x-1)2-x,g(x)=lnx-2a(x-1),其中常数a∈R.
(Ⅰ)讨论g(x)的单调性;
(Ⅱ)当a>0时,若f(x)有两个零点x1 , x2(x1<x2),求证:在区间(1,+∞)上存在f(x)的极值点x0 , 使得x0lnx0+lnx0-2x0>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,定义:dn=an+2+an﹣2an+1(n≥1),a1=1.
(1)若dn=an , a2=2,求an
(2)若a2=﹣2,dn≥1,求证此数列满足an≥﹣5(n∈N*);
(3)若|dn|=1,a2=1且数列{an}的周期为4,即an+4=an(n≥1),写出所有符合条件的{dn}.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是异面直线,则以下四个命题:存在分别经过直线的两个互相垂直的平面;存在分别经过直线的两个平行平面;经过直线有且只有一个平面垂直于直线经过直线有且只有一个平面平行于直线其中正确的个数有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系 中,以 为极点, 轴的正半轴为极轴,建立极坐标系.曲线 的极坐标方程为 ,曲线 的参数方程为 为参数), .
(Ⅰ)求曲线 的直角坐标方程,并判断该曲线是什么曲线?
(Ⅱ)设曲线 与曲线 的交点为 ,当 时,求 的值.

查看答案和解析>>

同步练习册答案