精英家教网 > 高中数学 > 题目详情

【题目】若点O和点F2(﹣ ,0)分别为双曲线 =1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则 的取值范围为

【答案】(1, + ]
【解析】解:∵点O和点F2(﹣ ,0)分别为双曲线 =1(a>0)的中心和左焦点,
∴c= ,则c2=a2+1=2,则a2=1,
即双曲线方程为x2﹣y2=1,
设P(x,y),则x≥1,
= = = =1+ + 2
则x≥1,∴1+ + 2>1,
又1+ + 2= + 2
∵x≥1,∴0< ≤1,
即当 =1时,1+ + 2= + 2取得最大值为 (1+ 2= +
的取值范围为(1, + ],
所以答案是:(1, + ],

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆 + =1(a>b>0)与双曲线 ﹣y2=1有相同的焦点F1 , F2 , 抛物线x2=2py(p>0)的焦点为F,且与椭圆在第一象限的交点为M,若|MF1|+|MF2|=2

(1)求椭圆的方程;
(2)若|MF|= ,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3ax-1,若f(x)在(-1,1)上单调递减,则a的取值范围为( )
A.a≥3
B.a>3
C.a≤3
D.a<3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集具有性质:对任意的 ,,使得成立.

Ⅰ)分别判断数集是否具有性质,并说明理由;

Ⅱ)求证;

Ⅲ)若,求数集中所有元素的和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线yx2-6x+1与轴交于点,与轴交于 两点.

(1)求△的面积

(2)外接圆的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F分别为AC,BC的中点,沿EF将△CEF折起,得到如图2所示的四棱锥C′﹣ABFE
(1)求证:AB⊥平面AEC′;
(2)当四棱锥C′﹣ABFE体积取最大值时,
①若G为BC′中点,求异面直线GF与AC′所成角;
②在C′﹣ABFE中AE交BF于C,求二面角A﹣CC′﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某镇有一块空地,其中 。当地镇政府规划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖,其中都在边上,且,挖出的泥土堆放在地带上形成假山,剩下的地带开设儿童游乐场. 为安全起见,需在的周围安装防护网.

1)当时,求防护网的总长度;

2)若要求挖人工湖用地的面积是堆假山用地的面积的倍,试确定 的大小;

3)为节省投入资金,人工湖的面积要尽可能小,问如何设计施工方案,可使 的面积最小?最小面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1 , C2的极坐标方程分别为ρ=2cosθ, ,射线θ=φ, 与曲线C1交于(不包括极点O)三点A,B,C.
(Ⅰ)求证:
(Ⅱ)当 时,求点B到曲线C2上的点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下:
甲是中国人,还会说英语.
乙是法国人,还会说日语.
丙是英国人,还会说法语.
丁是日本人,还会说汉语.
戊是法国人,还会说德语.
则这五位代表的座位顺序应为( )
A.甲丙丁戊乙
B.甲丁丙乙戊
C.甲乙丙丁戊
D.甲丙戊乙丁

查看答案和解析>>

同步练习册答案