精英家教网 > 高中数学 > 题目详情
8.若数列{an}满足an=$\frac{{a}_{n-1}}{{a}_{n-2}}$(n∈N*,n≥3),a1=2,a5=$\frac{1}{3}$,则a2015等于$\frac{1}{3}$.

分析 由已知结合数列递推式可得数列{an}是以6为周期的周期数列,则a2015可求.

解答 解:由an=$\frac{{a}_{n-1}}{{a}_{n-2}}$,且a1=2,
得${a}_{3}=\frac{{a}_{2}}{{a}_{1}}=\frac{{a}_{2}}{2}$,${a}_{4}=\frac{{a}_{3}}{{a}_{2}}=\frac{{a}_{2}}{2{a}_{2}}=\frac{1}{2}$,
${a}_{5}=\frac{{a}_{4}}{{a}_{3}}=\frac{\frac{1}{2}}{\frac{{a}_{2}}{2}}=\frac{1}{{a}_{2}}$,又a5=$\frac{1}{3}$,
∴${a}_{2}=\frac{1}{{a}_{5}}=3$,${a}_{6}=\frac{{a}_{5}}{{a}_{4}}=\frac{2}{3}$,${a}_{7}=\frac{{a}_{6}}{{a}_{5}}=2$,…
由上可知,数列{an}是以6为周期的周期数列,
∴${a}_{2015}={a}_{335×6+5}={a}_{5}=\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查数列递推式,考查了数列周期性的判断,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知直线l⊥平面α,直线m?平面β,下列命题正确的是(  )
A.若α⊥β,则l∥mB.若l⊥m,则α∥βC.若l∥β,则m⊥αD.若α∥β,则l⊥m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在正方体ABCD-A1B1C1D1中,若$\overrightarrow{A{C}_{1}}$=x$\overrightarrow{AC}$+y$\overrightarrow{A{B}_{1}}$+z$\overrightarrow{A{D}_{1}}$,则x+y+z等于(  )
A.3B.2C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C上任一点到点P(2,0)的距离比它到直线x=-4的距离小2.
(Ⅰ)求曲线C的方程;
(Ⅱ)直线过点P(a,0)(a>0)且与曲线C有两个交点A,B,求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对于给定的直线a与平面α,则下列结论成立的是(  )
A.α内存在于a垂直的直线B.α内存在与a平行的直线
C.α内不存在与a垂直的直线D.α内不存在与a平行的直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(-1,3),则|$\overrightarrow{a}$|的值是(  )
A.$\sqrt{10}$B.10C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数在区间(0,+∞)上,随着x的增大,函数值的增长速度越来越慢的是(  )
A.y=2xB.y=x2C.y=xD.y=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{lnx-ax+1,x≥a}\\{{e}^{x-1}+(a-2)x,x<a}\end{array}\right.$,其中a>0,a∈R.
(1)若a=1,判断函数f(x)的单调性;
(2)当a>1时,求函数f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设{an}是等比数列,下列结论中正确的是(  )
A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0
C.若0<a1<a2,则2a2<a1+a3D.若a1<0,则(a2-a1)(a2-a3)>0

查看答案和解析>>

同步练习册答案