精英家教网 > 高中数学 > 题目详情
已知线段AB的端点B的坐标为(1,3),端点A在圆C:(x+1)2+y2=4上运动.
(1)求线段AB的中点M的轨迹;
(2)过B点的直线L与圆C有两个交点A,D.当CA⊥CD时,求L的斜率.
解(1)设A(x1,y1),M(x,y),
由中点公式得
x1+1
2
=x
y1+3
2
=y
?
x1=2x-1
y1=2y-3

因为A在圆C上,所以(2x)2+(2y-3)2=4,即x2+(y-
3
2
)2=1

点M的轨迹是以(0,
3
2
)
为圆心,1为半径的圆;
(2)设L的斜率为k,则L的方程为y-3=k(x-1),即kx-y-k+3=0
因为CA⊥CD,△CAD为等腰直角三角形,
有题意知,圆心C(-1,0)到L的距离为
1
2
CD=
2
2
=
2

由点到直线的距离公式得
|-k-k+3|
k2+1
=
2

∴4k2-12k+9=2k2+2
∴2k2-12k+7=0,解得k=3±
11
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

点P在圆x2+y2-8x-4y+11=0上,点Q在圆x2+y2+4x+2y-1=0上,则|PQ|的最小值是_     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

k代表实数常数,讨论关于x,y的方程kx2+2y2-8=0所表示的曲线名称、并指出k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程y=
9-x2
表示的曲线是(  )
A.一条射线B.一个圆C.两条射线D.半个圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点F1(-1,0),F2(1,0),动点P满足|PF1|+|PF2|=2
3

(1)求点P的轨迹C的方程;
(2)若直线l:y=kx+2与轨迹C交于A、B两点,且
OA
OB
=0
(其中O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一动点在圆x2+y2=1上移动时,它与定点B(2,3)连线的中点轨迹是(  )
A.(2x-2)2+(2y-3)2=1B.(4-x)2+(6-y)2=1
C.(x+2)2+(y+3)2=1D.(x+2)2+(y+3)2=4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A(1,0),B(4,0),动点T(x,y)满足
|TA|
|TB|
=
1
2
,设动点T的轨迹是曲线C,直线l:y=kx+1与曲线C交于P,Q两点.
(1)求曲线C的方程;
(2)若
OP
OQ
=-2
,求实数k的值;
(3)过点(0,1)作直线l1与l垂直,且直线l1与曲线C交于M,N两点,求四边形PMQN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定直线l与平面α成60°角,点P是平面α内的一动点,且点P到直线l的距离为3,则动点P的轨迹是(  )
A.圆B.椭圆的一部分
C.抛物线的一部分D.椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为邻边作平行四边形MONP,则点P的轨迹方程为______.

查看答案和解析>>

同步练习册答案