分析 (1)连接AB,根据弦切角等于所夹弧所对的圆周角得到∠BAC=∠D,又根据同弧所对的圆周角相等得到∠BAC=∠E,等量代换得到∠D=∠E,根据内错角相等得到两直线平行即可;
(2)根据切割线定理得到PA2=PB•PD,求出PB的长,然后再根据相交弦定理得PA•PC=BP•PE,求出PE,再根据切割线定理得AD2=DB•DE=DB•(PB+PE),代入求出即可.
解答
(1)证明:连接AB,
∵AC是⊙O1的切线,
∴∠BAC=∠D.
又∵∠BAC=∠E,∴∠D=∠E.
∴AD∥EC.
(2)解:如图,
∵PA是⊙O1的切线,PD是⊙O1的割线,
∴PA2=PB•PD,
PA=AC-PC=6,
即62=PB•(PB+9),
∴PB=3.
在⊙O2中,PA•PC=BP•PE.
∴PE=4.
∵AD是⊙O2的切线,DE是⊙O2的割线,
且DE=DB+BP+PE=9+3+4=16,
∴AD2=DB•DE=9×16,∴AD=12.
点评 此题是一道综合题,要求学生灵活运用直线与圆相切和相交时的性质解决实际问题.本题的突破点是辅助线的连接.
科目:高中数学 来源: 题型:选择题
| A. | (2,3) | B. | [2,3) | C. | (-3,-1) | D. | (-1,0)∪[2,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | a | b | c | a+b+c |
| f(x) | d | d | t | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com