精英家教网 > 高中数学 > 题目详情
(文科)设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(1)求数列{an}和{bn}的通项公式;
(2)设{cn}=
bn
an
,求数列{cn}的前n项和Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由an=
S1,n=1
Sn-Sn-1,n≥2
,利用Sn=2n2,能求出an=4n-2.利用等比数列的通项公式,由已知条件求出首项和公比,由此能求出bn=2×(
1
4
)n-1

(2)由cn=
an
bn
=
4n-2
2×(
1
4
)n-1
=(2n-1)•4n-1,利用错位相减法能求出数列{cn}的前n项和Tn
解答: 解:(1)∵数列{an}的前n项和为Sn=2n2
∴当n=1时,a1=S1=2,
当n≥2时,an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
当n=1时,上式成立,
∴an=4n-2.
∵{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
b1=2
b2(6-2)=b1
,解得b1=2,b2=
1
2

q=
b2
b1
=
1
4
,∴bn=2×(
1
4
)n-1

(2)由(1)可得,cn=
an
bn
=
4n-2
2×(
1
4
)n-1
=(2n-1)•4n-1
∴Tn=1+3•4+5•42+…+(2n-1)•4n-1,①
则4Tn=4+3•42+5•43+…+(2n-1)•4n,②
由①-②得,-3Tn=1+2•4+2•42+…+2•4n-1-(2n-1)•4n
=1+
2×4(1-4n-1)
1-4
-(2n-1)•4n

=-(2n-
5
3
)•4n-
5
3

∴Tn=(
2
3
n-
5
9
)•4n+
5
9
点评:本题主要考查数列的通项公式、前n项和公式的求法,考查等差数列、等比数列等基础知识,考查抽象概括能力,推理论证能力,运算求解能力,考查化归与转化思想、函数与方程思想,解题时要注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

与椭圆
x2
16
+
y2
12
=1共焦点,离心率互为倒数的双曲线方程是(  )
A、x2-
y2
3
=1
B、
x2
3
-y2=1
C、
3x2
4
-
3y2
8
=1
D、
3y2
4
-
3x2
8
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,A={x|x≥3},B={x|1≤x≤7},C={x|x≥a-1}
(1)求A∩B; A∪B;
(2)若C∪A=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格试销,得到如下数据:
 单价x(元) 4.2 3.83.2 2.82.21.6
 销量y(千件) 1.62 4.44.8 5.2 6
由表中数据,求得线性回归方程为y=-2x+a,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于方程为
1
|x|
+
1
|y|
=1
的曲线C给出以下三个命题:
(1)曲线C关于原点中心对称;
(2)曲线C关于x轴对称,也关于y轴对称,且x轴和y轴是曲线C仅有的两条对称轴;
(3)若分别在第一、第二、第三、第四象限的点M,N,P,Q,都在曲线C上,则四边形MNPQ每一条边的边长都大于2;
其中正确的命题是(  )
A、(1)(2)
B、(1)(3)
C、(2)(3)
D、(1)(2)(3);

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x-y-m=0经过抛物线C:y2=2px(p>0)的焦点,l与C交于 A、B两点.若|AB|=6,则p的值为(  )
A、
1
2
B、
3
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

π
π
2
cos2
x
2
dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且a1+a3=10,S4=24.
(1)求数列{an}的通项公式;
(2)令Tn=
1
S1
+
1
S2
+…+
1
Sn
,求证:Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx•cos(x-
π
3
)+asin(2x+
π
3
)(a为常数)的图象经过点(
π
6
3

(Ⅰ)求a的值及函数f(x)的最小正周期;
(Ⅱ)解不等式f(x)≥0.

查看答案和解析>>

同步练习册答案