精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinx•cos(x-
π
3
)+asin(2x+
π
3
)(a为常数)的图象经过点(
π
6
3

(Ⅰ)求a的值及函数f(x)的最小正周期;
(Ⅱ)解不等式f(x)≥0.
考点:三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的图像与性质
分析:(1)由已知可得2sin
π
6
cos(-
π
6
)+asin
3
=
3
,从而解得a=1,由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin2x+
3
2
,由周期公式即可求最小正周期T.
(2)由f(x)≥0,知:sin2x≥-
3
2
,由正弦函数的图象解得2kπ-
π
3
≤2x≤2kπ+
3
(k∈Z),即可得f(x)≥0的解集.
解答: 解:(1)函数f(x)=2sinx•cos(x-
π
3
)+asin(2x+
π
3
)(a为常数)的图象经过点(
π
6
3
),
则有:2sin
π
6
cos(-
π
6
)+asin
3
=
3

故解得:a=1,
∴f(x)=2sinx•cos(x-
π
3
)+sin(2x+
π
3
),
=2sinx(cosxcos
π
3
+sinxsin
π
3
)+sin2xcos
π
3
+cos2xsin
π
3

=2sin2xcos
π
3
+(2sin2x+cos2x)sin
π
3

=sin2x+sin
π
3

=sin2x+
3
2

∴最小正周期T=
2
…6分
(2)由f(x)≥0,知:sin2x≥-
3
2

∴2kπ-
π
3
≤2x≤2kπ+
3
(k∈Z),
∴f(x)≥0的解集为:[kπ-
π
6
,kπ+
3
](k∈Z)…12分
点评:本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文科)设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(1)求数列{an}和{bn}的通项公式;
(2)设{cn}=
bn
an
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

杜拉拉因卓越的表现,每两年一晋升,工资也相应的得到提高,在公司,她的工资成了同事谈论的焦点,本报记者从DB公司获取杜拉拉这几年工资清单表,列表如下,如果杜拉拉计划在其事业的第四阶段年收入为40万,那么下列三个函数,二次函数f(x)=ax2+bx+c(a≠0),指数型函数g(x)=a•bx+c,对数型函数h(x)=a•lnx+b,哪一个是最佳模拟函数模型?
 阶段 职位工资(年收入)
第一阶段(29岁)销售总监秘书8万
第二阶段(31岁)HR主管18万
第三阶段(33岁)HR经理30万

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知x>0、y>0,且
1
x
+
9
y
=1,求x+y的最小值.
(2)设a、b、c>0,证明:
a2
b
+
b2
c
+
c2
a
≥a+b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:

若α表示平面,a,b表示直线,给定下列四个说法:其中正确说法的序号是(  )
①若a∥α,a⊥b,则b⊥α;
②若a∥b,a⊥α,则b⊥α;
③若a⊥α,a⊥b,则b∥α;
④若a⊥α,b⊥α,则a∥b.
A、①和②B、②和④
C、③和④D、①和③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足,a1=1,2a3=a2
(1)求数列{an}的通项公式
(2)设数列{bn}的前n项和为Sn,若点(n,Sn)在函数f(x)=
1
2
x2+
3
2
x的图象上,求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(  )
A、12cm3
B、24cm3
C、
24
3
cm3
D、40cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,2an+1=2an+1,n∈N+,数列{bn}的前n项和为Sn,Sn=
1
2
(1-
1
3n
),n∈N+
(1)求数列{an},{bn}的通项公式;
(2)设cn=anbn,n∈N+,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知8b=5c,C=2B,求cosC的值.

查看答案和解析>>

同步练习册答案