精英家教网 > 高中数学 > 题目详情
14.函数f(x)=ex(x2+2ax+2)在R上单调递增,则实数a的取值范围是[-1,1].

分析 求出函数的导数,问题转化为x2+(2a+2)x+(2a+2)≥0在R恒成立,根据二次函数的性质求出a的范围即可.

解答 解:f′(x)=ex[x2+(2a+2)x+(2a+2)],
若函数f(x)=ex(x2+2ax+2)在R上单调递增,
则f′(x)≥0在R恒成立,
即x2+(2a+2)x+(2a+2)≥0在R恒成立,
故△=(2a+2)2-4(2a+2)≤0,
解得:-1≤a≤1,
故答案为:[-1,1].

点评 本题考查了函数的单调性问题,考查导数的应用以及二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.将4个不同的球随机地放入3个盒子中,则每个盒子中至少有一个球的概率等于$\frac{4}{9}$.(用分数作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.观察下列等式:
$\begin{array}{l}(1+1)=2×1\\(2+1)(2+2)={2^2}×1×3\\(3+1)(3+2)(3+3)={2^3}×1×3×5\end{array}$

照此规律,第n个等式可为(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a∈R.命题p:函数f(x)=$\sqrt{{x^2}-2x+a}$的定义域为实数集R,命题q:函数g(x)=2x-a(x≤2)的值域为正实数集的子集.若“p∨q”是真命题,且“p∧q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.盒子中有6只灯泡,其中4只正品.2只次品,有放回地从中任取两次,每次只取一只,则事件:取到的两只中正品、次品各一只的概率(  )
A.$\frac{2}{3}$B.$\frac{4}{9}$C.$\frac{2}{9}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点P(2,0),Q(0,-2),动点M在直线l:x-y-1=0上,求:
(1)PM+QM的最小值;
(2)PM2+QM2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=-$\frac{2}{x}$的值域为{y∈R|y≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且满足Sn=2an-2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设函数f(x)=($\frac{1}{2}$)x,数列{bn}满足条件b1=2,f(bn+1)=$\frac{1}{f(-3-{b}_{n})}$,(n∈N*),若cn=$\frac{{b}_{n}}{{a}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.要得到函数y=cos2x的图象,只需将函数y=cos(2x+$\frac{π}{3}$)的图象(  )
A.向右平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{3}$个单位D.向左平移$\frac{π}{6}$个单位

查看答案和解析>>

同步练习册答案