7£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±Ïßl¹ý¼«×ø±êϵÄÚµÄÁ½µãA£¨2$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©ºÍB£¨3£¬$\frac{¦Ð}{2}$£©£®
£¨1£©Ð´³öÇúÏßCºÍÖ±ÏßlµÄÖ±½Ç×ø±êϵÖÐµÄÆÕͨ·½³Ì£»
£¨2£©ÈôPÊÇÇúÏßCÉÏÈÎÒâÒ»µã£¬Çó¡÷ABPÃæ»ýµÄ×îСֵ£®

·ÖÎö £¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÇúÏßCµÄÆÕͨ·½³Ì£®Óɼ«×ø±êA£¨2$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©ºÍB£¨3£¬$\frac{¦Ð}{2}$£©£¬¿ÉµÃÖ±½Ç×ø±ê£ºA£¨2£¬2£©£¬B£¨0£¬3£©£¬ÀûÓõãбʽ¼´¿ÉµÃ³ö·½³Ì£®
£¨2£©ÓÉÌâÒâ¿ÉÉè$P£¨2cos¦È£¬\sqrt{3}sin¦È£©$£¬ÔòµãPµ½Ö±ÏßABµÄ¾àÀëd=$\frac{{|{4sin£¨¦È+\frac{¦Ð}{6}£©-6}|}}{{\sqrt{5}}}¡Ý\frac{2}{{\sqrt{5}}}$£¬¼´¿ÉµÃ³ö¡÷ABPÃæ»ý×îСֵ£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃ£ºÇúÏßCµÄÆÕͨ·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$£®
Óɼ«×ø±êA£¨2$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©ºÍB£¨3£¬$\frac{¦Ð}{2}$£©£¬
¿ÉµÃÖ±½Ç×ø±ê£ºA£¨2£¬2£©£¬B£¨0£¬3£©£®
¡àÖ±Ïߵķ½³ÌΪ£º$y=\frac{2-3}{2-0}$x+3£¬»¯Îªx+2y-6=0£®
£¨2£©ÓÉÌâÒâ¿ÉÉè$P£¨2cos¦È£¬\sqrt{3}sin¦È£©$£¬Ôò
µãPµ½Ö±ÏßABµÄ¾àÀë$d=\frac{{|{2cos¦È+2\sqrt{3}sin¦È-6}|}}{{\sqrt{5}}}$=$\frac{{|{4sin£¨¦È+\frac{¦Ð}{6}£©-6}|}}{{\sqrt{5}}}¡Ý\frac{2}{{\sqrt{5}}}$£¬
µ±$sin£¨¦È+\frac{¦Ð}{6}£©=1$ʱȡµÃ×îСֵ£¬
¡ß$|{AB}|=\sqrt{5}$£¬
¡à¡÷ABPÃæ»ýµÄ×îСֵΪ$\frac{1}{2}¡Á\sqrt{5}$¡Á$\frac{2}{\sqrt{5}}$=1£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±êÓëÖ±½Ç×ø±ê»¥»¯¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢ºÍ²î¹«Ê½¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔÓëÖµÓò£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=$|\begin{array}{l}{\frac{¦Ð}{6}}&{0}&{\frac{¦Ð}{12}}\\{0}&{n}&{0}\\{-1}&{0}&{n}\end{array}|$
£¨1£©ÇóͨÏʽan£»
£¨2£©Éèbn=$\frac{¦Ðn}{12{S}_{n}}$£¬Éècn=$|\begin{array}{l}{{b}_{n}}&{1}\\{1}&{{b}_{n+1}}\end{array}|$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn¼°$\underset{lim}{n¡ú¡Þ}$$\frac{{T}_{n}}{n}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®µã£¨2£¬-2£©µÄ¼«×ø±êΪ$£¨2\sqrt{2}£¬\frac{7¦Ð}{4}£©$£¨¦Ñ£¾0£¬0¡Ü¦È£¼2¦Ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÈôP£¨x£¬y£©ÎªÔ²x2+y2-6x-4y+12=0Éϵĵ㣬Ôò$\frac{y}{x}$µÄ×î´óֵΪ$\frac{3+\sqrt{3}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÉèÇúÏßx2+y2-2x+4y-4=0¹ØÓÚÖ±Ïßx-2ay+11=0¶Ô³Æ£¬ÔòÖ±Ïßx-2ay+11=0µÄÇãб½ÇΪ£¨¡¡¡¡£©
A£®arctan£¨-6£©B£®arctan£¨-$\frac{1}{6}$£©C£®¦Ð-arctan6D£®¦Ð-arctan$\frac{1}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=$\frac{x^3}{3}$+$\frac{1}{2}$ax2+2bx+cÓÐÁ½¸ö¼«Öµµã£¬·Ö±ðΪx1£¬x2£¬Èôx1¡Ê£¨-2£¬1£©£¬x2¡Ê£¨1£¬2£©£¬Ôò2a-bµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-7£¬3£©B£®£¨-5£¬2£©C£®£¨2£¬+¡Þ£©D£®£¨-¡Þ£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²C1£º£¨x-3£©2+y2=9£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²C2µÄÔ²Ðĵļ«×ø±êΪ£¨$\sqrt{2}$£¬$\frac{¦Ð}{4}}$£©£¬°ë¾¶Îª1£®
£¨1£©ÇóÔ²C1µÄ¼«×ø±ê·½³Ì£»
£¨2£©ÉèÔ²C1ÓëÔ²C2½»ÓÚA£¬BÁ½µã£¬Çó|AB|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=x3+ax2+bx+5£¬µ±x=-2ʱ£¬f£¨x£©Óм«ÖµÎª13£®
£¨1£©ÇóʵÊýa£¬bµÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚ[-3£¬0]ÉϵÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Éèx£¾0£¬y£¾0£¬x2-y2=1£¬Ôò$\frac{y}{x-2}$µÄȡֵ·¶Î§ÊÇ£¨1£¬+¡Þ£©¡È£¨-¡Þ£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸