精英家教网 > 高中数学 > 题目详情
如图,AB是⊙O的一条切线,切点为B,直线ADE,CFD,CGE都是⊙O的割线,已知AC=AB.
(1)求证:FG∥AC;
(2)若CG=1,CD=4.求
DE
GF
的值.
考点:与圆有关的比例线段,相似三角形的判定
专题:直线与圆,推理和证明
分析:(1)由切割线定理得AB2=AD•AE,从而AD•AE=AC2,进而△ADC∽△ACE,由此能证明FG∥AC.
(2)由题意可得:G,E,D,F四点共圆,从而△CGF∽△CDE,由此能求出
DE
GF
解答: (1)证明:∵AB为切线,AC为割线,∴AB2=AD•AE,
又∵AC=AB,∴AD•AE=AC2
AD
AC
=
AC
AE
,又∵∠EAC=∠DAC,
∴△ADC∽△ACE,∴∠ADC=∠ACE,
又∵∠ADC=∠EGF,∴∠EGF=∠ACE,
∴FG∥AC.(5分)
(2)解:由题意可得:G,E,D,F四点共圆,
∴∠CGF=∠CDE,∠CFG=∠CED.
∴△CGF∽△CDE,∴
DE
GF
=
CD
CG

又∵CG=1,CD=4,∴
DE
GF
=4.(10分)
点评:本题考查两直线平行的证明,考查两线段比值的求法,是中档题,解题时要认真审题,注意切割线定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求y=x2与y=4围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合U={1,2,3,4,5,6,7},M={2,4,7},则∁UM=(  )
A、U
B、{1,2,6}
C、{1,3,5,6}
D、{1,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如图所示,则该几何体的体积是(  )
A、8
3
B、
16
3
3
C、
8
3
3
D、16
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosx,sin
x
2
)
b
=(0,cos
x
2
)
,x∈R,若函数f(x)=2+sinx-|a-b|2,且函数g(x)的图象与函数f(x)的图象关于原点成中心对称.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)若h(x)=g(x)-λf(x)+1在x∈[-
π
2
π
2
]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,过D点作⊙O的切线交AC于E.若CE=1,CA=5,则BD=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体的三视图如图,则这个几何体的表面积为(  )
A、4+
6
B、4+2
6
C、6
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=5,|
b
|=3,且
a
b
=-12,则
a
b
上的投影=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式(a-a2)•(x2+1)+x≤0对一切x∈[(0,2]恒成立,则a的取值范围为(  )
A、(-∞,
1-
3
2
B、[
1+
3
2
,+∞)
C、[
1-
3
2
1+
3
2
]
D、(-∞,
1-
3
2
]∪[
1+
3
2
,+∞)

查看答案和解析>>

同步练习册答案