精英家教网 > 高中数学 > 题目详情
18.已知指数函数$f(x)={(\frac{1}{2})^x}$,则使得f(m)>1成立的实数m的取值范围是(  )
A.(1,+∞)B.(0,+∞)C.(-∞,1)D.(-∞,0)

分析 根据指数函数的性质求出m的范围即可.

解答 解:指数函数$f(x)={(\frac{1}{2})^x}$在R递减,
若f(m)>1,则m<0,
故选:D.

点评 本题考查了指数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.平面直角坐标系xoy中,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6.
(1)求椭圆的方程;
(2)A,B是抛物线C2:x2=4y上两点,且A,B处的切线相互垂直,直线AB与椭圆C1相交于C,D两点,求弦|CD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设向量$\overrightarrow{a}$=(4,2),$\overrightarrow{b}$=(1,-1),则(2$\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$等于(  )
A.2B.-2C.-12D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,
求证:(1)GH∥面ABC
(2)平面EFA1∥平面BCHG.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设U=R,集合A={x|-3≤x≤5},B={x|x<-2,或x>6},求:
(1)A∩B;
(2)(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a,b,c为三条不重合的直线,α,β,γ为三个不重合的平面,给出四个命题:
①$\left.\begin{array}{l}{α∥c}\\{β∥c}\end{array}\right\}$⇒α∥β;②$\left.\begin{array}{l}{α∥γ}\\{β∥γ}\end{array}\right\}$⇒α∥β;③$\left.\begin{array}{l}{α∥c}\\{a∥c}\end{array}\right\}$⇒a∥α;④$\left.\begin{array}{l}{a∥γ}\\{β∥γ}\end{array}\right\}$⇒a∥β
其中正确的命题是(  )
A.①②③B.①④C.D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若直线a∥α,直线b?α,则直线a与直线b的位置关系为平行或异面.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=lg(10x+1)-ax是偶函数,$g(x)=\frac{{{4^x}+b}}{2^x}$是奇函数,则a+b的值为(  )
A.$\frac{1}{2}$B.1C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a,b∈R,c∈[0,2π),若对任意实数x都有2sin(3x-$\frac{π}{3}$)=asin(bx+c),则满足条件的a,b,c的组数为(  )
A.1组B.2组C.3组D.4组

查看答案和解析>>

同步练习册答案