精英家教网 > 高中数学 > 题目详情
10.若直线a∥α,直线b?α,则直线a与直线b的位置关系为平行或异面.

分析 由题意,直线a∥α,可得直线与面没有公共点,故直线与面的线 没有公共点,由此关系即可得出直线a与b的位置关系.

解答 解:由题意直线a∥α,直线b?α,可得直线a,b一定没有公共点,故两直线的位置关系可以是异面或平行
故答案为平行或异面

点评 本题考点是空间中直线与直线的位置关系,考查线与面平行时,线与面内的线之间位置关系的判断,解题的关键是理解线面平行的定义及空间中线与线之间的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数f(x)=log${\;}_{\frac{1}{2}}$(x2-2x-3)的单调递减区间是(  )
A.(-∞,1)B.(-∞,-1)C.(3,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若1<ex<2,则x的集合为(  )
A.(0,ln2)B.(-ln2,0)C.(1,2)D.[0,ln2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知指数函数$f(x)={(\frac{1}{2})^x}$,则使得f(m)>1成立的实数m的取值范围是(  )
A.(1,+∞)B.(0,+∞)C.(-∞,1)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.给出下列命题:
①函数y=sin(x+$\frac{π}{4}$)在闭区间[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函数;
②直线x=$\frac{π}{8}$是函数y=sin(2x+$\frac{5π}{4}$)图象的一条对称轴;
③要得到函数y=sin2x的图象,需将函数y=cos(2x-$\frac{π}{3}$)的图象向右平移$\frac{π}{12}$单位;
④函数f(x)=Asin(x+φ),(A>0)在x=$\frac{π}{4}$处取到最小值,则y=f($\frac{3π}{4}$-x)是奇函数.
其中,正确的命题的序号是:②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={m+1,-3},集合B={2m+1,m-3}.若A∩B={-3},则实数m的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求过点P(2,3),且满足下列条件的直线方程:
(1)倾斜角等于直线x-$\sqrt{3}$y+4=0的倾斜角的二倍的直线方程;
(2)在两坐标轴上截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.利用计算器,列出自变量和函数值的对应值如表:
x-1.6-1.4-1.2-1-0.8-0.6-0.4-0.20
y=2x0.32990.37890.43530.50.57430.65980.75790.87061
y=x22.561.961.4410.640.360.160.040
那么方程2x=x2有一个根位于下列区间的(  )
A.(-1.6,-1.2)B.(-1.2,-0.8)C.(-0.8,-0.6)D.(-0.6,-0.2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是 菱形,AC=6,$BD=6\sqrt{3}$,E是PB上任意一点.
(1)求证:AC⊥DE;
(2)当△AEC的面积最小时,求证:CE⊥面PAB
(3)当△AEC的面积最小值为9时,问:线段BC上是否存在点G,使EG与平面PAB所成角的正切值为2?若存在,求出BG的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案