精英家教网 > 高中数学 > 题目详情
10.观察下列各式:$\frac{1}{1+2}$=$\frac{1}{3}$,$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{1}{2}$,$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{3}{5}$…,则$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+12}$等于(  )
A.$\frac{5}{6}$B.$\frac{11}{12}$C.$\frac{11}{13}$D.$\frac{12}{13}$

分析 观察分子分母的变化规律即可得到答案.

解答 解:$\frac{1}{1+2}$=$\frac{1}{3}$,
$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{1}{2}$=$\frac{2}{4}$,
$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{3}{5}$…,
则$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+12}$=$\frac{11}{13}$,
故选:C.

点评 本题考查了归纳推理的问题,关键是找到规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点M、N.若以椭圆的焦点为顶点,以椭圆长轴的顶点为焦点作一双曲线恰为等轴双曲线.
(1)求椭圆的离心率;
(2)设L为过椭圆右焦点N的直线,交椭圆于P、Q两点,当△MPQ周长为8时;求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=$\frac{1-x}{1+x}$
(1)试证明f(x)在(-∞,1)上为单调递减函数;
(2)若函数g(x)=($\frac{1}{2}$)f(x),且g(x)在区间[-3,-2]上没有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)的定义域为R,其图象关于点(1,0)中心对称,其导函数为f′(x),当x<1时,(x-1)[f(x)+(x-1)f′(x)]>0,则不等式xf(x+1)>f(2)的解集为(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点F(-c,0)(c>0)作圆x2+y2=$\frac{a^2}{4}$的切线,切点为E,延长FE交双曲线右支于点P.且满足$\overrightarrow{OP}=\overrightarrow{FE}+\overrightarrow{OE}$,则双曲线的渐近线方程为(  )
A.$\sqrt{10}$x±2y=0B.2x±$\sqrt{10}$y=0C.$\sqrt{6}$x±2y=0D.2x±$\sqrt{6}$y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.定义:设f(x)为(a,b)上的可导函数,若f′(x)为增函数,则称f(x)为(a,b)上的凸函数.
(1)判断函数y=x3与y=lg$\frac{1}{x}$是否为凸函数;
(2)设f(x)为(a,b)上的凸函数,求证:若λ12+…+λn=1,λi>0(i=1,2,…,n),则?xi∈(a,b)(i=1,2,…,n)恒有λ1f(x1)+λ2f(x2)+…+λnf(xn)=f(λ1x12x2+…+λnxn)成立;
(3)设a,b,c>0,n∈N*,n≥b,求证:an+bn+cn≥an-5b3c2+bn-5c3a2+cn-5a3b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α,β,γ为不同的平面,m,n为不同的直线,则m⊥β的一个充分条件是(  )
A.α∩γ=m,α⊥γ,β⊥γB.α⊥β,β⊥γ,m⊥αC.α⊥β,α∩β=n,m⊥nD.n⊥α,n⊥β,m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率为(  )
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“a2=1”是“函数f(x)=ln(1+ax)-ln(1+x)为奇函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.即不充分也不必要条件

查看答案和解析>>

同步练习册答案