精英家教网 > 高中数学 > 题目详情
19.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率为(  )
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{3}}{2}$

分析 由题意可求得AB的方程,设出P点坐标,代入AB得方程,由PF1⊥PF2,得$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,结合椭圆的离心率的性质即可求得答案.

解答 解:依题意,作图如下
∵A(-a,0),B(0,b),F1(-c,0),F2(c,0),
∴直线AB的方程为:$\frac{x}{-a}+\frac{y}{b}=1$,整理得:bx-ay+ab=0,
设直线AB上的点P(x,y)
则bx=ay-ab,
∴x=$\frac{a}{b}$y-a,
∵PF1⊥PF2
∴$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=(-c-x,-y)•(c-x,-y)=x2+y2-c2
=($\frac{a}{b}$)2+y2-c2
令f(y)=($\frac{a}{b}$)2+y2-c2
则f′(y)=2($\frac{a}{b}$y-a)×$\frac{a}{b}$+2y,
∴由f′(y)=0得:y=$\frac{{a}^{2}b}{{a}^{2}+{b}^{2}}$,于是x=-$\frac{a{b}^{2}}{{a}^{2}+{b}^{2}}$,
∴$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=(-$\frac{a{b}^{2}}{{a}^{2}+{b}^{2}}$)2+($\frac{{a}^{2}b}{{a}^{2}+{b}^{2}}$)2-c2=0,
整理得:$\frac{{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$=c2,又b2=a2-c2,e2=$\frac{{c}^{2}}{{a}^{2}}$,
∴e4-3e2+1=0,
∴e2=$\frac{3±\sqrt{5}}{2}$,又椭圆的离心率e∈(0,1),
∴e2=$\frac{3-\sqrt{5}}{2}$=($\frac{\sqrt{5}-1}{2}$)2
∴椭圆的离心率为e=$\frac{\sqrt{5}-1}{2}$.
故选A.

点评 本题考查椭圆的性质,考查向量的数量积,考查直线的方程,着重考查椭圆性质的应用,是重点更是难点,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区 5 户家庭,得到如下统计数据表:
收入 x  (万元)8.28.610.011.311.9
支出 y  (万元)6.27.58.08.59.8
根据上表可得回归直线方程 $\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中 $\widehat{b}$=0.76,$\widehat{a}$=y-$\widehat{b}$x,据此估计,该社区一户收入为 14 万元家庭年支出为(  )
A.11.04 万元B.11.08 万元C.12.12 万元D.12.02 万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.观察下列各式:$\frac{1}{1+2}$=$\frac{1}{3}$,$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{1}{2}$,$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{3}{5}$…,则$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+12}$等于(  )
A.$\frac{5}{6}$B.$\frac{11}{12}$C.$\frac{11}{13}$D.$\frac{12}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(x2-3x+3)•ex
(1)试确定t的取值范围,使得函数f(x)在[-2,t](t>-2)上为单调函数;
(2)若t为自然数,则当t取哪些值时,方程f(x)-z=0(x∈R)在[-2,t]上有三个不相等的实数根,并求出相应的实数z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{lnx+1}{x}$,g(x)=x2-(a+1)x
(1)求函数f(x)的最大值;
(2)当a≥0时,讨论函数h(x)=$\frac{1}{2}{x^2}$+a-axf(x)与函数g(x)的图象的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列关于命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0”
B.“a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件
C.命题“若随机变量X~N(1,4),P(X≤0)=m,则P(0<X<2)=1-2m.”为真命题
D.若命题P:?n∈N,2n>1000,则¬P:?n∈N,2n>1000

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=sin({ωx-\frac{π}{6}})+\frac{1}{2}({ω>0})$,且$f(α)=-\frac{1}{2}$,$f(β)=\frac{1}{2}$,若|α-β|的最小值为$\frac{3π}{4}$,则ω的值为(  )
A.1B.$\frac{1}{3}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知A(3,-1),B=(x,y),C(0,1)三点共线,若x,y均为正数,则$\frac{3}{x}$+$\frac{2}{y}$的最小值是(  )
A.$\frac{5}{3}$B.$\frac{8}{3}$C.8D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线l1:x-3y+3=0与l2:x-y+1=0的夹角的大小为arctan$\frac{1}{2}$.(结果用反三角函数表示)

查看答案和解析>>

同步练习册答案