精英家教网 > 高中数学 > 题目详情
6.直线y=x+b平分圆x2+y2-8x+2y-2=0的周长,则b=(  )
A.3B.5C.-3D.-5

分析 由直线y=x+b平分圆x2+y2-8x+2y-2=0的周长,可知圆的圆心在直线上,用点的坐标适合直线的方程求解.

解答 解:∵直线y=x+b平分圆x2+y2-8x+2y-2=0的周长
∴圆的圆心在直线上
即(4,-1)适合直线y=x+b
∴b=-5
故选D.

点评 本题通过直线与圆的位置关系来考查点与线的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知公差为d的等差数列{an}和公比q<0的等比数列{bn},a1=b1=1,a2+b2=1,a3+b3=4
(1)求数列{an}和{bn}的通项公式;
(2)令cn=2${\;}^{{a}_{n}}$•bn2(n∈N*),抽去数列{cn}的第1项、第4项、第7项、…、第(3n-2)项、…,余下的项的顺序不变,构成一个新的数列{dn}求数列{dn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个几何体的三视图如图所示,则这个几何体的体积是(  )
A.$2\sqrt{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,AB=AC=BD=1,AB?平面α,AC⊥平面α,BD⊥AB,BD与平面α成30°角,则C、D间的距离为$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)同时满足:
①对于定义域上的任意x,恒有f(x)+f(-x)=0
②对于定义域上的任意x1,x2,当x1≠x2时,恒有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,则称函数f(x)为“理想函数”.
给出下列四个函数中:
①$f(x)=\frac{1}{x}$;
②f(x)=x2; 
③f(x)=-x;
④$f(x)=\left\{{\begin{array}{l}{-{x^2}}&{x≥0}\\{{x^2}}&{x<0}\end{array}}\right.$
能被称为“理想函数”的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.△ABC中,sinA=cosB=$\frac{4}{5}$,BC=5,则△ABC的面积为(  )
A.$\frac{21}{8}$B.6C.$\frac{21}{8}$或6D.$\frac{21}{8}$或$\frac{75}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow a$=(1,0),$\overrightarrow b$=(-$\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),则$\overrightarrow a$与$\overrightarrow b$的夹角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=ex-x-1的最小值是(  )
A.-ln2B.$-\sqrt{2}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\overrightarrow m$•$\overrightarrow n$,其中向量$\overrightarrow m$=(2cosx,1),$\overrightarrow n$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期与单调递减区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为$\frac{{\sqrt{3}}}{2}$,求a.

查看答案和解析>>

同步练习册答案