精英家教网 > 高中数学 > 题目详情
椭圆上的点到直线的最大距离是    (     )
A.3B.C.D.
D
设椭圆上的点P(4cosθ,2sinθ),由点到直线x+2y- =0的距离公式,计算可得答案.
解:设椭圆=1上的点P(4cosθ,2sinθ)
则点P到直线x+2y-=0的距离
d== dmax ==
故选D.
本题考查直线和椭圆的位置关系,解题时要认真审题,仔细求解.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)分别以双曲线的焦点为顶点,以双曲线G的顶点为焦点作椭圆C。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P的坐标为,在y轴上是否存在定点M,过点M且斜率为k的动直线 交椭圆于A、B两点,使以AB为直径的圆恒过点P,若存在,求出M的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知椭圆的中心在原点,焦点在轴上,长轴是短轴的3倍,且经过点,求椭圆的标准方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线与圆相切,过的一个焦点且斜率为的直线也与圆相切.
(Ⅰ)求双曲线的方程;      
(Ⅱ)是圆上在第一象限的点,过且与圆相切的直线的右支交于两点,的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点M到(3,0)的距离比它到直线ⅹ+4=0的距离小1,则点M的轨迹方程为(   )
A.y²=12ⅹB.y²=12ⅹ(ⅹ?0)
C.y²=6ⅹD.y²=6ⅹ(ⅹ?0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 已知抛物线的准线为,焦点为,圆的圆心在轴的正半轴上,且与轴相切,过原点作倾斜角为的直线,交于点,交圆于另一点,且
(1)求圆和抛物线C的方程;
(2)若为抛物线C上的动点,求的最小值;
(3)过上的动点Q向圆作切线,切点为S,T,
求证:直线ST恒过一个定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知过抛物线的焦点,斜率为的直线交抛物线于)两点,且
(1)求该抛物线的方程
(2)为坐标原点,为抛物线上一点,若,求的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a、b、c分别为双曲线的实半轴长、虚半轴长、半焦距,且方程无实根,则双曲线离心率的取值范围是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,过抛物线焦点的直线依次交抛物线与圆于点A、B、C、D,则的值是_____

查看答案和解析>>

同步练习册答案