精英家教网 > 高中数学 > 题目详情
10.已知抛物线C:y2=2px (p>0)的焦点为F,过点F倾斜角为60°的直线l与抛物线C在第一、四象限分别交于A、B两点,则$\frac{{|{AF}|}}{{|{BF}|}}$的值等于3.

分析 设出A、B坐标,利用焦半径公式求出|AB|,结合x1x2=$\frac{{p}^{2}}{4}$,求出A、B的坐标,然后求其比值.

解答 解:设A(x1,y1),B(x2,y2),则y12=2px1,y22=2px2
|AB|=x1+x2+p=$\frac{2p}{si{n}^{2}θ}$=$\frac{8}{3}$p,即有x1+x2=$\frac{5}{3}$p,
由直线l倾斜角为60°,
则直线l的方程为:y-0=$\sqrt{3}$(x-$\frac{p}{2}$),
即y=$\sqrt{3}$x-$\frac{\sqrt{3}}{2}$p,联立抛物线方程,
消去y并整理,得
12x2-20px+3p2=0,
则x1x2=$\frac{{p}^{2}}{4}$,可得x1=$\frac{3}{2}$p,x2=$\frac{1}{6}$p,
则$\frac{|AF|}{|BF|}$=$\frac{\frac{3}{2}p+\frac{1}{2}p}{\frac{1}{2}p+\frac{1}{6}p}$=3,
故答案为:3.

点评 本题考查直线的倾斜角,抛物线的简单性质,考查学生分析问题解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(文)试卷(解析版) 题型:选择题

已知集合,且,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.2014巴西世界杯结束后,某网站针对世界杯情况进行了调查,参与调查的人主要集中在[20,50]岁之间,若规定;观看世界杯直播32场(含)以下者,称为“非球迷”,观看比赛直播超过32场这成为“球迷”,得到如下统计表:
分组编号年龄分组球迷所占比例
1[20,25]12000.5
2[25,30]18000.6
3[30,35]10000.5
4[35,40]a0.4
5[40,45]3000.2
6[45,50]2000.1
若参与调查的“非球迷”总人数为7600人.
(1)求a的值;
(2)从年龄在[20,35)的“球迷”中按照年龄区间分层抽样的方法抽取20人
①从这20人中随机抽取2人,求这2人恰好属于同一年龄区间的概率
②从这20人中随机抽取2人,用ζ表示年龄在[30,35)之间的人数,求ξ的分布列及期望值E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若将函数f(x)=|sin(ωx-$\frac{π}{6}$)|(ω>0)的图象向左平移$\frac{π}{9}$个单位后,所得图象对应的函数为偶函数,则实数ω的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设m,n是两条不同的直线,α,β是两个不同的平面,则(  )
A.若m∥α,m∥β,则α∥βB.若m∥α,m∥n,则n∥αC.若m⊥α,m∥β,则α⊥βD.若m∥α,n?α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设F1,F2分别为椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,点A为椭圆E的左顶点,点B为椭圆E的上顶点,且|AB|=2.
(Ⅰ)若椭圆E的离心率为$\frac{{\sqrt{6}}}{3}$,求椭圆E的方程;
(Ⅱ)设P为椭圆E上一点,且在第一象限内,直线F2P与y轴相交于点Q.若以PQ为直径的圆经过点F1,证明:点P在直线x+y-2=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a>0,且a≠1函数f(x)=loga(1-ax
(1)求函数f(x)的定义域,判断并证明f(x)的单调性
(2)当a=e(e为自然对数的底数)时,设h(x)=(1-ef(x))(x2-m+1),若函数h(x)的极值存在,求实数m的取值范围以及函数h(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sinπx和函数g(x)=cosπx在区间[0,2]上的图象交于A,B两点,则△OAB面积是(  )
A.$\frac{3\sqrt{2}}{8}$B.$\frac{\sqrt{2}}{2}$C.$\frac{5\sqrt{2}}{8}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\frac{1}{x+2}$-k|x|({k∈R})有三个不同的零点,则实数k的取值范围是(  )
A.(0,1)B.(0,2)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

同步练习册答案