精英家教网 > 高中数学 > 题目详情
5.设m,n是两条不同的直线,α,β是两个不同的平面,则(  )
A.若m∥α,m∥β,则α∥βB.若m∥α,m∥n,则n∥αC.若m⊥α,m∥β,则α⊥βD.若m∥α,n?α,则m∥n

分析 A.若m∥α,m∥β,则α∥β,可由面面平行的条件判断;
B.m∥α,m∥n,则n∥α,或n?α;
C.若m⊥α,m∥β,则α⊥β,可由面面垂直的判断定理作出判断;
D.m∥α,n?α,则m∥n或m,n异面.

解答 解:A.若m∥α,m∥β,则α∥β;此命题错误,因为两个平面平行于同一条直线不能保证两个平面平行,故不正确;
B.m∥α,m∥n,则n∥α,或n?α,故不正确;
C.若m⊥α,m∥β,则α⊥β;此命题正确,因为m∥β,则一定存在直线n在β,使得m∥n,又m⊥α可得出n⊥α,由面面垂直的判定定理知,α⊥β,正确;
D.m∥α,n?α,则m∥n或m,n异面,故不正确.
故选:C.

点评 本题考查平面与平面之间的位置关系,空间中两个平面的位置关系主要有相交与平行,相交中比较重要的位置关系是两面垂直,本题考查了利用基础理论作出推理判断的能力,是立体几何中的基本.

练习册系列答案
相关习题

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(文)试卷(解析版) 题型:选择题

观察下列各等式:,依照以上各式成立的规律,得到一般性的等式为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC中,点A(-1,0),B(1,0),动点C满足$\frac{sinA+sinB}{sinC}$=λ(常数λ>1),C点轨迹为i.
(I)试求曲线i的轨迹方程;
(II)当λ=$\sqrt{3}$时,过定点B(1,0)的直线与曲线交于P,Q两点,N是曲线上不同于P,Q的动点,试求△NPQ的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}满足a1=3,且an+1=4an+3(n∈N*),则数列{an}的通项公式为(  )
A.22n-1+1B.22n-1-1C.22n+1D.22n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=ln($\frac{1}{x}$+1)(x>0)的反函数f-1(x)=$\frac{1}{{e}^{x}-1}$,x∈(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线C:y2=2px (p>0)的焦点为F,过点F倾斜角为60°的直线l与抛物线C在第一、四象限分别交于A、B两点,则$\frac{{|{AF}|}}{{|{BF}|}}$的值等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在四棱柱ABCD-A1B1C1D1中,AA1⊥平面A1B1C1D1,底面A1B1C1D1是边长为a的正方形,侧棱AA1的长为b,E为侧棱BB1上的动点(包括端点),则(  )
A.对任意的a,b,存在点E,使得B1D⊥EC1
B.当且仅当a=b时,存在点E,使得B1D⊥EC1
C.当且仅当a≤b时,存在点E,使得B1D⊥EC1
D.当且仅当a≥b时,存在点E,使得B1D⊥EC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在三棱锥P-ABC中,△ABC是边长为2的正三角形,∠PCA=90°,E,H分别为AP,AC的中点,AP=4,BE=$\sqrt{3}$.
(Ⅰ)求证:AC⊥平面BEH;
(Ⅱ)求直线PA与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某多面体的三视图如图所示,则该多面体最长的棱长为4;外接球的体积为$\frac{32π}{3}$.

查看答案和解析>>

同步练习册答案