精英家教网 > 高中数学 > 题目详情
12.如图,在三棱锥P-ABC中,△ABC是边长为2的正三角形,∠PCA=90°,E,H分别为AP,AC的中点,AP=4,BE=$\sqrt{3}$.
(Ⅰ)求证:AC⊥平面BEH;
(Ⅱ)求直线PA与平面ABC所成角的正弦值.

分析 (Ⅰ)证明:BH⊥AC,EH⊥AC,即可证明AC⊥平面BEH;
(Ⅱ)取BH得中点G,连接AG,证明∠EAG为PA与平面ABC所成的角,即可求直线PA与平面ABC所成角的正弦值.

解答 (Ⅰ)证明:因为△ABC是边长为2的正三角形,
所以BH⊥AC.…(2分)
又因为E,H分别为AP,AC的中点,得EH∥PC,
因为∠PCA=90°,
所以EH⊥AC.…(5分)
故AC⊥平面BEH.…(7分)
(Ⅱ)解:取BH得中点G,连接AG.…(9分)
因为EH=BH=BE=$\sqrt{3}$,所以EG⊥BH.
又因为AC⊥平面BEH,所以EG⊥AC,
所以EG⊥平面ABC.
所以∠EAG为PA与平面ABC所成的角.…(12分)
在直角三角形EAG中,AE=2,EG=$\frac{3}{2}$,
所以\sin∠EAG=$\frac{EG}{EA}$=$\frac{3}{4}$.…(15分)
所以PA与平面ABC所成的角的正弦值为$\frac{3}{4}$.

点评 本题考查线面垂直的判定,考查线面角,考查学生分析解决问题的能力,正确利用线面垂直的判定定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知抛物线C:y2=2px(p>0),半圆M:x2+2x+y2=0(y≥0),过点P(-3,0)与半圆M相切于点A的直线l,与抛物线C有且只有一个公共点B.
(1)求抛物线C的方程及点A,B的坐标;
(2)过点B作倾斜角互补的两条直线分别交抛物线C于S,T两点(不同于坐标原点O),求证:直线ST∥直线AO.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设m,n是两条不同的直线,α,β是两个不同的平面,则(  )
A.若m∥α,m∥β,则α∥βB.若m∥α,m∥n,则n∥αC.若m⊥α,m∥β,则α⊥βD.若m∥α,n?α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a>0,且a≠1函数f(x)=loga(1-ax
(1)求函数f(x)的定义域,判断并证明f(x)的单调性
(2)当a=e(e为自然对数的底数)时,设h(x)=(1-ef(x))(x2-m+1),若函数h(x)的极值存在,求实数m的取值范围以及函数h(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x),g(x)满足:?x∈(0,+∞),均有f(x)>x,g(x)<x成立,则称“f(x)与g(x)关于y=x分离”.已知函数f(x)=ax与g(x)=logax(a>0,且a≠1)关于y=x分离,则a的取值范围是(${e}^{\frac{1}{e}}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sinπx和函数g(x)=cosπx在区间[0,2]上的图象交于A,B两点,则△OAB面积是(  )
A.$\frac{3\sqrt{2}}{8}$B.$\frac{\sqrt{2}}{2}$C.$\frac{5\sqrt{2}}{8}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校对参加高校自主招生测试的学生进行模拟训练,从中抽出N名学生,其数学成绩的频率分布直方图如图所示.已知成绩在区间[90,100]内的学生人数为2人.
(1)求N的值并估计这次测试数学成绩的平均分和众数;
(2)学校从成绩在[70,100]的三组学生中用分层抽样的方法抽取12名学生进行复试,若成绩在[80,90)这一小组中被抽中的学生实力相当,且能通过复试的概率均为$\frac{1}{2}$,设成绩在[80,90)这一小组中被抽中的学生中能通过复试的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.Rt△ABC中,∠C=90°,CD⊥AB,AD为圆O的直径,圆O与AC交于E,求证:$\frac{AE}{CE}$=$\frac{A{C}^{2}}{B{C}^{2}}$.

查看答案和解析>>

科目:高中数学 来源:2017届河南商丘第一高级中学年高三上理开学摸底数学试卷(解析版) 题型:选择题

将函数的图象向右平移个单位后得到函数的图象.若函数在区间上均单调递增,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案