精英家教网 > 高中数学 > 题目详情
18.在△ABC中,角A,B,C的对边分别为a,b,c,满足2acosB=2c-b.
(Ⅰ)求角A;
(Ⅱ)若△ABC的面积为$\frac{3\sqrt{3}}{4}$,且a=$\sqrt{3}$,请判断△ABC的形状,并说明理由.

分析 (Ⅰ)由正弦定理,三角形内角和定理化简已知可得2cosAsinB=sinB,由sinB≠0,可得cosA=$\frac{1}{2}$,结合范围0<A<π,即可求得A的值.
(Ⅱ)利用特殊角的三角函数值可求sinA,利用三角形面积公式可求bc的值,由余弦定理解得b2+c2=6,从而解得b=c=a=$\sqrt{3}$,即可得解.

解答 (本题满分为12分)
解:(Ⅰ)∵2acosB=2c-b,由正弦定理,可得:2sinAcosB=2sinC-sinB,
又∵sinC=sin(A+B)=sinAcosB+cosAsinB,…(2分)
∴2cosAsinB=sinB,在△ABC中,sinB≠0,故cosA=$\frac{1}{2}$,…(4分)
∵0<A<π,
∴A=$\frac{π}{3}$…(6分)
(Ⅱ)△ABC是等边三角形,理由如下:
∵由(Ⅰ)可知A=$\frac{π}{3}$,
∴sinA=$\frac{\sqrt{3}}{2}$,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{3\sqrt{3}}{4}$.解得bc=3,由余弦定理:a2=b2+c2-2bccosA,解得b2+c2=6…(10分)
解得:c=$\sqrt{3}$,b=$\sqrt{3}$,
∴△ABC是等边三角形…(12分)

点评 本题主要考查了正弦定理,三角形内角和定理,特殊角的三角函数值,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=($\sqrt{3}$cos$\frac{A}{2}$,sin$\frac{A}{2}$),$\overrightarrow{n}$=(-cos$\frac{B}{2}$,$\sqrt{3}$sin$\frac{B}{2}$),且满足$\overrightarrow{m}$•$\overrightarrow{n}$=-$\frac{\sqrt{3}}{2}$.
(Ⅱ)求角C的大小;
(Ⅱ)若△ABC的面积为$\frac{\sqrt{3}}{4}$,且a-b=2,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是R上的偶函数,在(-3,-2)上为减函数且对?x∈R都有f(2-x)=f(x),若A,B是钝角三角形ABC的两个锐角,则(  )
A.f(sinA)<f(cosB)B.f(sinA)>f(cosB)
C.f(sinA)=f(cosB)D.f(sinA)与与f(cosB)的大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足:a1=3,$\sqrt{{a_{n+1}}+1}-\sqrt{{a_n}+1}=1({n∈{N^+}})$.
(1)求数列{an}的通项公式;
(2)设bn=(-1)nan(n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图所示,该伪代码运行的结果为11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)(sinA-sinB)=(c-b)sinC.
(1)若cosB=$\frac{3}{5}$,求cos(A+B)的值;
(2)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,a:b:c=3:2:4,则sinC=(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{\sqrt{15}}{4}$D.-$\frac{\sqrt{15}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\frac{1}{{\sqrt{{2^{x-1}}-1}}}$的定义域为(  )
A.(0,1)B.(0,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若X是一个随机变量,则E(X-E(X))的值为(  )
A.2E(X)B.0C.E(X)D.无法求

查看答案和解析>>

同步练习册答案