精英家教网 > 高中数学 > 题目详情
9.已知一扇形的周长为40,当扇形的面积最大时,扇形的圆心角等于(  )
A.2B.3C.1D.4

分析 由题意设扇形的半径和弧长分别为r和l,可得2r+l=40,扇形的面积S=$\frac{1}{2}$lr=$\frac{1}{4}$•l•2r,由基本不等式即可得解.

解答 解:设扇形的半径和弧长分别为r和l,
由题意可得2r+l=40,
∴扇形的面积S=$\frac{1}{2}$lr=$\frac{1}{4}$•l•2r≤$\frac{1}{4}$$(\frac{l+2r}{2})$2=100.
当且仅当l=2r=20,即l=20,r=10时取等号,
此时圆心角为α=$\frac{l}{r}$=2,
∴当半径为10圆心角为2时,扇形的面积最大,最大值为100.
故选:A.

点评 本题主要考查扇形的周长与扇形的面积公式的应用,考查了基本不等式的应用以及学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+bx+c,且f(1+x)=f(1-x),f(0)=-2.
(1)求f(x)的解析式;
(2)已知a∈R,p:当0<x<1时,不等式f(x)+3<2x+a恒成立;q:当x∈[-2,2]时,g(x)=f(x)-ax是单调函数,若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-3x+1
(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)求曲线在点(0,f(0))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在一个暗箱中装有5个手感、材质、大小都相同的球,其中有3个黑球,2个白球.
(1)如果不放回地依次抽取2个球,则在第1次抽到黑球的条件下,第2次抽到黑球的概率.
(2)如果从暗箱中任取2球,求在已知其中一个球为黑球的条件下,另一个球也是黑球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列几何体中,正视图、侧视图和俯视图都相同的是(  )
A.圆柱B.圆锥C.D.三棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若0≤x≤1,0≤y≤4,则xy2-y的最大值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若△ABC的BC边上的高AD=BC,则$\frac{AC}{AB}$+$\frac{AB}{AC}$的取值范围是$[2,\sqrt{5}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设不等式组$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面区域为D,在区域D内随机取一个点,则此点到点(1,1)的距离大于1的概率是(  )
A.$\frac{4-π}{4}$B.$\frac{π-2}{2}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知m∈R,p:?x0∈R,x02+2(m-3)x0+1<0,q:?x∈R,4x2+4(m-2)x+1>0恒成立.若p∨q为真,p∧q为假,求m的取值范围.

查看答案和解析>>

同步练习册答案