精英家教网 > 高中数学 > 题目详情
15.从混有4张假钞的20张百元钞票中任意抽取两张,将其中一张放到验钞机上检验发现是假钞,则两张都是假钞的概率是$\frac{3}{35}$.

分析 设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,所求的概率即 P(A/B).先求出P(AB)和P(B)的值,再根据P(A/B)=$\frac{P(AB)}{P(B)}$,运算求得结果.

解答 解:设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,
则所求的概率即 P(A/B).
又P(AB)=P(A)=$\frac{{C}_{4}^{2}}{{C}_{20}^{2}}$,P(B)=$\frac{{C}_{4}^{2}+{C}_{4}^{1}{C}_{16}^{1}}{{C}_{20}^{2}}$,
由公式P(A/B)=$\frac{P(AB)}{P(B)}$=$\frac{{C}_{4}^{2}}{{C}_{4}^{2}+{C}_{4}^{1}{C}_{16}^{1}}$=$\frac{3}{35}$.
故答案为:$\frac{3}{35}$.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意条件概率的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,正方形ABCD的对角线AC与BD相交于点O,四边形OAEF为矩形,平面OAEF⊥平面ABCD,AB=AE.
(Ⅰ)求证:平面DEF⊥平面BDF;
(Ⅱ)若点H在线段BF上,且BF=3HF,求直线CH与平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“?x0∈R,$x_0^2+{x_0}+1<0$”的否定是(  )
A.不存在x0∈R,$x_0^2+{x_0}+1≥0$B.?x0∈R,$x_0^2+{x_0}+1≥0$
C.?x∈R,x2+x+1<0D.?x∈R,x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.不等式$\frac{2-x}{x+1}$≥0的解集为(  )
A.{x|0<x≤2}B.{x|-1<x≤2}C.{x|x>-1}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|x|-2≤x≤3},B={x∈Z|x2-5x<0},则A∩B=(  )
A.{1,2}B.{2,3}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,则输出的结果是(  )
A.$\frac{21}{22}$B.$\frac{20}{21}$C.$\frac{19}{20}$D.$\frac{22}{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设x∈[$\frac{π}{2}$,$\frac{3π}{4}$],则函数f(x)=sinx-cosx的值域是[0,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等腰△ABC中,AD是底边BC上的中线,若$\overrightarrow{AB}$•$\overrightarrow{AD}$=m$\overrightarrow{AB}$$•\overrightarrow{AC}$,AD=λBC,则当m=2时,实数λ的值是±$\frac{\sqrt{2}}{2}$,当λ∈($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$)时,实数m的取值范围为($\frac{3}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{2x+y≤6}\end{array}\right.$,则x+y的取值范围为(  )
A.[2,5]B.[2,$\frac{7}{2}$]C.[$\frac{7}{2}$,5]D.[5,+∞)

查看答案和解析>>

同步练习册答案