精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N*),数列{bn}满足b1=1,nbn+1=(n+1)bn,(n∈N*
(1)求数列{an}和{bn}的通项公式.
(2)数列{bn}的前n项和为Qn,且Tn=Sn+Qn是否存在常数λ,使得对任意正整数n,不等式λTn≥Tn+1恒成立?若存在,求λ的最小值,若不存在,说明理由.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)令n=1,得a1=1,当n≥2时,an=Sn-Sn-1=2(an-an-1),由此能求出an=2n-1.由
bn+1
n+1
=
bn
n
,能求出bn=n.
(2)由Tn=Sn+Qn,得Tn=2•2n-1-1+
n(n-1)
2
=2n-1+
n(n+1)
2
,由此能求出λ存在最小值3,使不等式λTn≥Tn+1成立.
解答: 解:(1)令n=1,得a1=S1=2a1-1,解得a1=1,
当n≥2时,an=Sn-Sn-1=2(an-an-1),
整理,得an=2an-1
an=2n-1
∵数列{bn}满足b1=1,nbn+1=(n+1)bn
bn+1
n+1
=
bn
n

∴{
bn
n
}是首项为1的常数列,∴
bn
n
=1

∴bn=n.
(2)∵数列{bn}的前n项和为Qn
Qn=1+2+3+…+n=
n(n+1)
2

∵Tn=Sn+Qn
∴Tn=2•2n-1-1+
n(n-1)
2
=2n-1+
n(n+1)
2

当n=1时,λT1≥T2,得λ≥3,
当n=2时,λT2≥T3,得λ≥
13
6

猜想:当λ≥3时,3Tn≥Tn+1
证明:3Tn-Tn+1=3[2n-1+
n(n+1)
2
]
-[2n+1-1+
(n+1)(n+2)
2
]

=2n+n-3≥0.
综上所述,λ存在最小值3,使不等式λTn≥Tn+1成立.
点评:本题考查数列的通项公式的求法,考查使得不等式成立的实数的最小值的求法,解题时要认真审题,注意构造法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(2,-1,3),
b
=(-1,4,-2),
c
=(4,5,x),若
a
b
c
三向量共面,则|
c
|=(  )
A、5
B、6
C、
66
D、
41

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)与g(x)是定义在同一区间[m,n]上的两个函数,若函数y=f(x)+g(x)在x∈[m,n]上有两个不同的零点,则称f(x)和g(x)在[m,n]上是“相互函数”;若f(x)=-4lnx-5x与g(x)=x2+3x+a在区间[1,e]上是相互函数,则a的取值范围为(  )
A、[1,4ln2)
B、[-e2+2e+4,4ln2)
C、(4ln2,+∞)
D、[1,-e2+2e+4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=
1
2
n2+pn,数列{bn}的前n项和为Tn=2n-1,且a4=b4
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)若对于数列{cn}有cn=2an•bn,请求出数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x≥-13,关于x的不等式|x-3|-|2x+10|+x+15-2|a+13|≥0的解集不为空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一元二次方程ax2+bx+c=0的两根x1,x2分别是一元二次方程cx2+dx+a=0的两根的2013倍,试证明:|b|=|d|.

查看答案和解析>>

科目:高中数学 来源: 题型:

边长为2的菱形ABCD中,∠A=60°,沿BD折成直二面角,过点A作PA⊥平面ABC,且AP=2
3

(Ⅰ)求证:PA∥平面DBC;
(Ⅱ)求三棱锥P-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-2
x+1

(1)求证:函数f(x)在(-1,+∞)上是增函数;
(2)设a>1,证明方程ax+f(x)=0没有负根.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥母线长为6,底面圆半径长为4,点M是母线PA的中点,AB是底面圆的直径,底面半径OC与母线PB所成的角的大小等于θ.
(1)当θ=60°时,求异面直线MC与PO所成的角;
(2)当三棱锥M-ACO的体积最大时,求θ的值.

查看答案和解析>>

同步练习册答案