精英家教网 > 高中数学 > 题目详情
已知在数列{an}中,a1=3,点(an,an+1)在直线y=x+2上,若数列{bn}满足bn=an•3n,记Tn是数列{bn}的前n项的和,那么Tn=
 
考点:数列的求和
专题:等差数列与等比数列
分析:由已知得an+1=an+2,从而数列{an}是以3为首项,以2为公差的等差数列,an=3+2(n-1)=2n+l,从而bn=(2n+1)•3n,由此能求出{bn}的前n项的和.
解答: 解:∵点(an,an+1)在直线y=x+2上,
∴an+1=an+2,即an+1-an=2,
∴数列{an}是以3为首项,以2为公差的等差数列,
∴an=3+2(n-1)=2n+l.
bn=an3n
∴bn=(2n+1)•3n
∴Tn=3×3+5×32+7×33+…+(2n+1)•3n,①
∴3Tn=3×32+5×33+…+(2n-1)•3n+(2n+1)•3n+1,②
①-②,得-2Tn=3×3+2(32+33+…+3n)-(2n+1)•3n+1
=9+2×
9(1-3n-1)
1-3
-(2n+1)•3n+1
=-2n•3n+1
∴Tn=n•3n+1
故答案为:n•3n+1
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集为R,函数f(x)=
4-x2
的定义域为M,函数f(x)=ln(x2-4x)的定义域为N,则M∩N=(  )
A、[-2,0)
B、(-∞,-2]
C、(4,+∞)
D、(-∞,0]∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形OABC中,O为原点,B点坐标为(8,6).
(1)求∠BOA的余弦值;
(2)若点P、Q分别为线段OA、OB上的动点,且BQ=OP,连接PQ,设OP=x.
①连接CQ,求当△OPQ与△CQB相似时x的值.
②当△OPQ为等腰三角形时,请直接写出x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=2sin(x+φ)(φ为常数)和g(x)=-
1
2
cos(2x+
π
6
)
(x∈R),h(x)=f(x)+g(x);如下命题:
①设f(x)与g(x)的最小正周期分别是T1与T2,那么T1+T2=3π;
②当φ=
π
12
时,在区间(-
π
12
π
6
)
上,f(x)与g(x)都是增函数;
③当φ=0时,h(x)的最大值是
5
2

④当φ=
π
2
时,h(x)为偶函数.
其中正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
lim
x→∞
1-ex
1+2ex
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三内角A、B、C所对的边分别为a、b、c,且a=2,c=4,cosB=
1
4
,则sinC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解我市各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“我市有哪几个著名的旅游景点?”,统计结果见下表和各组人数的频率分布直方图(如图):
组号分组回答正确的人数回答正确的人数
占本组的频率
第1组[15,25)a0.5
第2组[25,35)18x
第3组[35,45)b0.9
第4组[45,55)90.36
第5组[55,65]3y
(1)分别求出a,b,x,y的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?
(3)在 (2)抽取的6人中随机抽取2人,求所抽取的人中恰好含有第4组人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列an=
n,n=2k-1
n,n=2k
(k∈N*),则a1+a2+a3+…+a100=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正向等比数列{an}的首项a1=
3
2
,其前n项和为Sn,(n∈N*)且S3+a3,S5+a5,S4+a4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=an+(-1)nlnan,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案