精英家教网 > 高中数学 > 题目详情
数列an=
n,n=2k-1
n,n=2k
(k∈N*),则a1+a2+a3+…+a100=
 
考点:数列的求和
专题:等差数列与等比数列
分析:由已知得a1+a2+a3+…+a100=1+2+3+…+100=
100×101
50
=5050.
解答: 解:∵数列an=
n,n=2k-1
n,n=2k
(k∈N*),
∴a1+a2+a3+…+a100=1+2+3+…+100=
100×101
50
=5050.
故答案为:5050.
点评:本题考查数列的前100项和的求法,是基础题,解题时要注意等差数列的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知E、F分别是矩形ABCD的边BC、CD的中点,EF与AC交于点G,若
AB
=
a
AD
=
b
,用
a
b
表示
AG

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=3,点(an,an+1)在直线y=x+2上,若数列{bn}满足bn=an•3n,记Tn是数列{bn}的前n项的和,那么Tn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-cosx在区间[a,b]上是减函数,且f(a)=
1
3
,f(b)=-
1
3
,则sin(
π
2
+
a+b
2
)的值为(  )
A、0
B、-
3
2
C、
1
6
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)asin0°+bcos90°+ctan180°;
(2)-p2cos180°+q2sin90°-2pqcos0°;
(3)a2cos2π-b2sin
2
+abcosπ-absin
π
2

(4)mtan0°+ncos
π
2
-psinπ-qcos
2
-rsin2π.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=
an+3
2an-4
,求通项an

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b是实数,则“a>b>1”是“a+
1
a
>b+
1
b
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

i是虚数单位,则(
3
2
i-
1
2
)(-
1
2
+
3
2
i)
=(  )
A、1
B、-
1
2
+
3
2
i
C、
1
2
-
3
2
i
D、-
1
2
-
3
2
i

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,设点P为圆C:(x-2)2+y2=5上的任意一点,点Q(2a,a+2),其中a∈R,则线段PQ长度的最小值为(  )
A、
5
5
B、
5
C、
3
5
5
D、
6
5
5

查看答案和解析>>

同步练习册答案