精英家教网 > 高中数学 > 题目详情

【题目】春节期间某商店出售某种海鲜礼盒,假设每天该礼盒的需求量在范围内等可能取值,该礼盒的进货量也在范围内取值(每天进1次货).商店每销售1盒礼盒可获利50元;若供大于求,剩余的削价处理,每处理1盒礼盒亏损10元;若供不应求,可从其它商店调拨,销售1盒礼盒可获利30.设该礼盒每天的需求量为盒,进货量为盒,商店的日利润为.

1)求商店的日利润关于需求量的函数表达式;

2)试计算进货量为多少时,商店日利润的期望值最大?并求出日利润期望值的最大值.

【答案】(1)

(2)时,日利润的数学期望最大,最大值为958.5

【解析】

(1)根据题意即可写出日利润关于需求量的分段函数的表达式;

(2)首先可以写出日利润的分布列,然后根据日利润的分布列即可写出日利润的数学期望,最后通过二次函数的相关性质,即可得出结果。

(1)由于礼盒的需求量为,进货量为,商店的日利润关于需求量的函数表达式为:

,即

(2)日利润的分布列为:

日利润的数学期望为:

结合二次函数的知识,当时,日利润的数学期望最大,最大值为958.5元。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为两个不重合的平面,则的充要条件是(

A.内有无数条直线与平行B.垂直于同一平面

C.平行于同一条直线D.内有两条相交直线与平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某国有53座城市,任意两座城市之间要么有一条双向公路直达,要么没有直接相连的公路。已知这53座城市之间共有312条公路,并且由任何一座城市出发通过公路均能到达其余各城市。每一座城市至多向其余12座城市引出公路,且每走一条公路需要缴纳10元路费。现甲在城市A,且身上仅有120元。甲是否一定能到达任意一座城市?证明你的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为(t为参数,0).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为

(Ⅰ)写出曲线C的直角坐标方程;

(Ⅱ)若直线l与曲线C交于A,B两点,且AB的长度为2,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春节期间某商店出售某种海鲜礼盒,假设每天该礼盒的需求量在范围内等可能取值,该礼盒的进货量也在范围内取值(每天进1次货).商店每销售1盒礼盒可获利50元;若供大于求,剩余的削价处理,每处理1盒礼盒亏损10元;若供不应求,可从其它商店调拨,销售1盒礼盒可获利30.设该礼盒每天的需求量为盒,进货量为盒,商店的日利润为.

1)求商店的日利润关于需求量的函数表达式;

2)试计算进货量为多少时,商店日利润的期望值最大?并求出日利润期望值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中 为自然对数的底数)

(Ⅰ)若函数无极值,求实数的取值范围;

(Ⅱ)时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年初,某高级中学教务处为了解该高级中学学生的作文水平,从该高级中学学生某次考试成绩中按文科、理科用分层抽样方法抽取人的成绩作为样本,得到成绩频率分布直方图如图所示,,参考的文科生与理科生人数之比为,成绩(单位:分)分布在的范围内且将成绩(单位:分)分为六个部分,规定成绩分数在分以及分以上的作文被评为“优秀作文”,成绩分数在50分以下的作文被评为“非优秀作文”.

1)求实数的值;

2)(i)完成下面列联表;

文科生/

理科生/

合计

优秀作文

6

______

______

非优秀作文

______

______

______

合计

______

______

400

ii)以样本数据研究学生的作文水平,能否在犯错误的概率不超过的情况下认为获得“优秀作文”与学生的“文理科“有关?

注:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为的菱形中,交于点,将沿直线折起到的位置(点不与两点重合).

(1)求证:不论折起到何位置,都有平面

(2)当平面时,点是线段上的一个动点,若与平面所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0.若甲、乙两名同学射击的命中率分别为p,且甲、乙两人各射击一次所得分数之和为2的概率为,假设甲、乙两人射击互不影响.

1)求p的值;

2)记甲、乙两人各射击一次所得分数之和为X,求X的分布列和均值.

查看答案和解析>>

同步练习册答案