精英家教网 > 高中数学 > 题目详情
1.将函数f(x)=sin(2ωx+$\frac{π}{6}}$)(ω>0)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将其向左平移$\frac{π}{6}$个单位后,所得的图象关于y轴对称,则ω的值可能是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.5D.2

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦的图象的对称性,求得ω=6k+2,结合所给的选项,可得结论.

解答 解:将函数f(x)=sin(2ωx+$\frac{π}{6}}$)(ω>0)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,
可得y=sin(ωx+$\frac{π}{6}}$)的图象;
再将其向左平移$\frac{π}{6}$个单位后,可得y=sin[ω(x+$\frac{π}{6}}$)+$\frac{π}{6}$]=sin(ωx+ω•$\frac{π}{6}}$+$\frac{π}{6}$)的图象,
根据所得的图象关于y轴对称,则ω•$\frac{π}{6}}$+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,即ω=6k+2,结合所给的选项,
故选:D.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在斜三棱柱ABC-A1B1C1中,底面ABC是正三角形,E是AB中点,A1E⊥平面ABC.
(I)证明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求点B到平面ACC1A1的距离;
②求直线CB1与平面ACC1A1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,所有棱长都为2的正三棱柱BCD-B'C'D',四边形ABCD是菱形,其中E为BD的中点.
(1)求证:平面BC'D∥面AB'D';
(2)求证:平面C'CE⊥平面AB'D'.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,且$\frac{AE}{EB}$=$\frac{CF}{FB}$=2,将此正方形沿DE,DF折起,使点A,C重合于点P,若O为线段EF任一点,DO与平面PEF所成的角为θ,则tanθ的最大值是$\frac{3\sqrt{14}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在矩形ABCD中,E,F分别为AD上的两点,已知∠CAD=θ,∠CED=2θ,∠CFD=4θ,AE=600,EF=200$\sqrt{3}$,则CD=300.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|x+$\frac{8}{m}}$|+|x-2m|(m>0).
(1)求函数f(x)的最小值;
(2)求使得不等式f(1)>10成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知A,B,P是直线l上三个相异的点,平面内的点O∉l,若正实数x,y满足$4\overrightarrow{OP}=2x\overrightarrow{OA}+y\overrightarrow{OB}$,则$\frac{1}{x}+\frac{1}{y}$的最小值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{3+2\sqrt{2}}}{4}$C.$\frac{{3+\sqrt{2}}}{4}$D.$\frac{{3-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校在规划课程设置方案的调研中,随机抽取50名文科学生,调查对选做题倾向得下表:
 倾向“平面几何选讲”倾向“坐标系与参数方程”倾向“不等式选讲”合计
男生164626
女生481224
合计20121850
(Ⅰ)从表中三种选题倾向中,选择可直观判断“选题倾向与性别有关系”的两种,作为选题倾向变量的取值,分析有多大的把握认为“所选两种选题倾向与性别有关系”.(只需要做出其中的一种情况)
(Ⅱ)按照分层抽样的方法,从倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生中抽取8人进行问卷.
(ⅰ)分别求出抽取的8人中倾向“平面几何选讲”与倾向“坐标系与参数方程”的人数;
(ⅱ)若从这8人中任选3人,记倾向“平面几何选讲”与倾向“坐标系与参数方程”的人数的差为ξ,求ξ的分布列及数学期望Eξ.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2-alnx-x(a≠0).
(1)求函数f(x)的单调区间;
(2)若f(x)有两个极值点x1,x2(0<x1<x2),记过点A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k,问是否存在a,使k=-2a-$\frac{1}{2}$,若存在,求出a的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案